441edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 556757355 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
'''441edo''' is the [[Equal_division_of_the_octave|equal division of the octave]] into 441 parts of 2.721 [[cent|cent]]s each. It is a very strong [[7-limit|7-limit]] system; strong enough to qualify as a [[The_Riemann_Zeta_Function_and_Tuning#Zeta EDO lists|zeta peak edo]]. It is also very strong simply considered as a 5-limit system; it is the first division past 118 with a lower [[5-limit|5-limit]] [[Tenney-Euclidean_temperament_measures#TE simple badness|relative error]]. In the 5-limit It [[tempering_out|tempers out]] the hemithirds [[Comma|comma]], |38 -2 -15&gt;, the ennealimma, |1 -27 18&gt;, whoosh, |37 25 -33&gt;, and egads, |-36 -52 51&gt;. In the 7-limit it tempers out 2401/2400, 4375/4374, 420175/419904 and 250047/250000, so that it supports [[Ragismic_microtemperaments#Ennealimmal|ennealimmal temperament]]. In the [[11-limit|11-limit]] it tempers out 4000/3993, and in the 13-limit, 1575/1573, 2080/2079 and 4225/4224. It provides the [[Optimal_patent_val|optimal patent val]] for 11- and [[13-limit|13-limit]] [[Ragismic_microtemperaments#Ennealimmal|semiennealimmal temperament]], and the 7-limit 41&amp;359 temperament. Since it tempers out 1575/1573, the nicola, it allows the [[nicolic_tetrad|nicolic tetrad]].
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2015-08-16 10:26:41 UTC</tt>.<br>
: The original revision id was <tt>556757355</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**441edo** is the [[equal division of the octave]] into 441 parts of 2.721 [[cent]]s each. It is a very strong [[7-limit]] system; strong enough to qualify as a [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta peak edo]]. It is also very strong simply considered as a 5-limit system; it is the first division past 118 with a lower [[5-limit]] [[Tenney-Euclidean temperament measures#TE simple badness|relative error]]. In the 5-limit It [[tempering out|tempers out]] the hemithirds [[comma]], |38 -2 -15&gt;, the ennealimma, |1 -27 18&gt;, whoosh, |37 25 -33&gt;, and egads, |-36 -52 51&gt;. In the 7-limit it tempers out 2401/2400, 4375/4374, 420175/419904 and 250047/250000, so that it supports [[Ragismic microtemperaments#Ennealimmal|ennealimmal temperament]]. In the [[11-limit]] it tempers out 4000/3993, and in the 13-limit, 1575/1573, 2080/2079 and 4225/4224. It provides the [[optimal patent val]] for 11- and [[13-limit]] [[Ragismic microtemperaments#Ennealimmal|semiennealimmal temperament]], and the 7-limit 41&amp;359 temperament. Since it tempers out 1575/1573, the nicola, it allows the [[nicolic tetrad]].


The steps of 441 are only 1/30 of a cent sharp of 1/8 syntonic comma. Lowering the fifth, which is only 1/12 of a cent sharp, by two steps gives a generator, 256\441, close to 1/4 comma meantone. Like [[205edo]] but even more accurately, 441 can be used as a basis for a Vicentino style "adaptive JI" system.
The steps of 441 are only 1/30 of a cent sharp of 1/8 syntonic comma. Lowering the fifth, which is only 1/12 of a cent sharp, by two steps gives a generator, 256\441, close to 1/4 comma meantone. Like [[205edo|205edo]] but even more accurately, 441 can be used as a basis for a Vicentino style "adaptive JI" system.


441 factors into primes as [[3edo|3]]&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt; · [[7edo|7]]&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;, and has divisors 3, 7, [[9edo|9]], [[21edo|21]], [[49edo|49]], 63 and 147.</pre></div>
441 factors into primes as [[3edo|3]]<span style="vertical-align: super;">2</span> · [[7edo|7]]<span style="vertical-align: super;">2</span>, and has divisors 3, 7, [[9edo|9]], [[21edo|21]], [[49edo|49]], 63 and 147.
<h4>Original HTML content:</h4>
[[Category:441edo]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;441edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;441edo&lt;/strong&gt; is the &lt;a class="wiki_link" href="/equal%20division%20of%20the%20octave"&gt;equal division of the octave&lt;/a&gt; into 441 parts of 2.721 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It is a very strong &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; system; strong enough to qualify as a &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;zeta peak edo&lt;/a&gt;. It is also very strong simply considered as a 5-limit system; it is the first division past 118 with a lower &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; &lt;a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures#TE simple badness"&gt;relative error&lt;/a&gt;. In the 5-limit It &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the hemithirds &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;, |38 -2 -15&amp;gt;, the ennealimma, |1 -27 18&amp;gt;, whoosh, |37 25 -33&amp;gt;, and egads, |-36 -52 51&amp;gt;. In the 7-limit it tempers out 2401/2400, 4375/4374, 420175/419904 and 250047/250000, so that it supports &lt;a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal"&gt;ennealimmal temperament&lt;/a&gt;. In the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; it tempers out 4000/3993, and in the 13-limit, 1575/1573, 2080/2079 and 4225/4224. It provides the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for 11- and &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt; &lt;a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal"&gt;semiennealimmal temperament&lt;/a&gt;, and the 7-limit 41&amp;amp;359 temperament. Since it tempers out 1575/1573, the nicola, it allows the &lt;a class="wiki_link" href="/nicolic%20tetrad"&gt;nicolic tetrad&lt;/a&gt;.&lt;br /&gt;
[[Category:edo]]
&lt;br /&gt;
[[Category:ennealimmal]]
The steps of 441 are only 1/30 of a cent sharp of 1/8 syntonic comma. Lowering the fifth, which is only 1/12 of a cent sharp, by two steps gives a generator, 256\441, close to 1/4 comma meantone. Like &lt;a class="wiki_link" href="/205edo"&gt;205edo&lt;/a&gt; but even more accurately, 441 can be used as a basis for a Vicentino style &amp;quot;adaptive JI&amp;quot; system.&lt;br /&gt;
[[Category:hemithirds]]
&lt;br /&gt;
[[Category:nicola]]
441 factors into primes as &lt;a class="wiki_link" href="/3edo"&gt;3&lt;/a&gt;&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt; · &lt;a class="wiki_link" href="/7edo"&gt;7&lt;/a&gt;&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;, and has divisors 3, 7, &lt;a class="wiki_link" href="/9edo"&gt;9&lt;/a&gt;, &lt;a class="wiki_link" href="/21edo"&gt;21&lt;/a&gt;, &lt;a class="wiki_link" href="/49edo"&gt;49&lt;/a&gt;, 63 and 147.&lt;/body&gt;&lt;/html&gt;</pre></div>
[[Category:semienealimmal]]
[[Category:zeta]]

Revision as of 00:00, 17 July 2018

441edo is the equal division of the octave into 441 parts of 2.721 cents each. It is a very strong 7-limit system; strong enough to qualify as a zeta peak edo. It is also very strong simply considered as a 5-limit system; it is the first division past 118 with a lower 5-limit relative error. In the 5-limit It tempers out the hemithirds comma, |38 -2 -15>, the ennealimma, |1 -27 18>, whoosh, |37 25 -33>, and egads, |-36 -52 51>. In the 7-limit it tempers out 2401/2400, 4375/4374, 420175/419904 and 250047/250000, so that it supports ennealimmal temperament. In the 11-limit it tempers out 4000/3993, and in the 13-limit, 1575/1573, 2080/2079 and 4225/4224. It provides the optimal patent val for 11- and 13-limit semiennealimmal temperament, and the 7-limit 41&359 temperament. Since it tempers out 1575/1573, the nicola, it allows the nicolic tetrad.

The steps of 441 are only 1/30 of a cent sharp of 1/8 syntonic comma. Lowering the fifth, which is only 1/12 of a cent sharp, by two steps gives a generator, 256\441, close to 1/4 comma meantone. Like 205edo but even more accurately, 441 can be used as a basis for a Vicentino style "adaptive JI" system.

441 factors into primes as 32 · 72, and has divisors 3, 7, 9, 21, 49, 63 and 147.