Keemic family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenwolf (talk | contribs)
m Make 11-limit supermagic the same header level as supernatural
Line 2: Line 2:


== Supermagic  ==
== Supermagic  ==
Subgroup: 2.3.5.7
Subgroup: 2.3.5.7


Line 30: Line 29:
Scales: [[supermagic15]]
Scales: [[supermagic15]]


=== 11-limit  ===
== Undecimal supermagic ==
 
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Line 46: Line 44:
Scales: [[supermagic15]]
Scales: [[supermagic15]]


== Supernatural ==
== Supernatural ==
 
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Line 64: Line 61:
[[Category:Regular temperament theory]]
[[Category:Regular temperament theory]]
[[Category:Temperament family]]
[[Category:Temperament family]]
[[Category:Keemic]]
[[Category:Keemic family| ]] <!-- main article -->
[[Category:Supermagic]]
[[Category:Supermagic]]
[[Category:Rank 3]]
[[Category:Rank 3]]

Revision as of 14:39, 22 August 2021

The keemic family of rank-3 temperaments are planar temperaments tempering out the keema, 875/864.

Supermagic

Subgroup: 2.3.5.7

Comma list: 875/864

Mapping: [1 0 0 5], 0 1 0 3], 0 0 1 -3]]

Mapping generators: ~2, ~3, ~5

Map to lattice: [0 0 -1 3], 0 1 1 0]]

Lattice basis:

6/5 length = 0.8879, 3/2 length = 1.3391
Angle (6/5, 3/2) = 77.834

POTE generators: ~3/2 = 701.8733, ~5/4 = 380.4684

Minimax tuning:

[[1 0 0 0, [0 1 0 0, [5/4 3/4 1/4 -1/4, [5/4 3/4 -3/4 3/4]
Eigenmonzos: 2, 4/3, 7/5

Template:Val list

Projection pair: 7 864/125

Scales: supermagic15

Undecimal supermagic

Subgroup: 2.3.5.7.11

Comma list: 100/99, 385/384

Mapping: [1 0 0 5 2], 0 1 0 3 -2], 0 0 1 -3 2]]

POTE generators: ~3/2 = 704.1985, ~5/4 = 381.5394

Template:Val list

Badness: 0.641 × 10-3

Scales: supermagic15

Supernatural

Subgroup: 2.3.5.7.11

Comma list: 225/224, 245/243

Mapping: [1 0 2 -1 0], 0 5 1 12 0], 0 0 0 0 1]]

POTE generators: ~5/4 = 380.3520, ~11/8 = 547.5758

Template:Val list

* optimal patent val: 104

Badness: 0.888 × 10-3