Dicot family: Difference between revisions
m fix heading structure |
mNo edit summary |
||
Line 1: | Line 1: | ||
The [[5-limit]] parent [[comma]] for the dicot family is 25/24, the [[chromatic semitone]]. Its [[monzo]] is {{monzo| -3 -1 2 }}, and flipping that yields {{wedgie| 2 1 -3}} for the [[wedgie]]. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo]], [[24edo]] using the val {{val|24 38 55}} (24c) and [[31edo]] using the val {{val|31 49 71}} (31c). In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all. In other words, it is an [[exotemperament]]. | The [[5-limit]] parent [[comma]] for the dicot family is 25/24, the [[chromatic semitone]]. Its [[monzo]] is {{monzo| -3 -1 2 }}, and flipping that yields {{wedgie| 2 1 -3}} for the [[wedgie]]. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo|7EDO]], [[24edo|24EDO]] using the val {{val|24 38 55}} (24c) and [[31edo|31EDO]] using the val {{val|31 49 71}} (31c). In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all. In other words, it is an [[exotemperament]]. | ||
=== Seven limit children === | === Seven limit children === | ||
Line 5: | Line 5: | ||
== Dicot == | == Dicot == | ||
Subgroup: 2.3.5 | Subgroup: 2.3.5 | ||
Line 15: | Line 14: | ||
[[Tuning ranges]]: | [[Tuning ranges]]: | ||
* [[ | * [[Diamond monotone]] range: ~5/4 = [300.000, 400.000] (1\4 to 1\3) | ||
* [[Diamond tradeoff]] range: ~5/4 = [315.641, 386.314] | |||
* Diamond monotone and tradeoff: ~5/4 = [315.641, 386.314] | |||
{{Val list|legend=1| 3, 4, 7, 17, 24c, 31c }} | {{Val list|legend=1| 3, 4, 7, 17, 24c, 31c }} | ||
Line 22: | Line 23: | ||
=== 7-limit === | === 7-limit === | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 15/14, 25/24 | [[Comma list]]: 15/14, 25/24 | ||
[[Mapping]]: [{{val|1 1 2 2}}, {{val|0 2 1 3}}] | [[Mapping]]: [{{val|1 1 2 2}}, {{val|0 2 1 3}}] | ||
[[Wedgie]]: {{wedgie|2 1 3 -3 -1 4}} | [[Wedgie]]: {{wedgie|2 1 3 -3 -1 4}} | ||
[[POTE generator]]: ~5/4 = 336.381 | |||
{{Val list|legend=1| 3d, 4, 7, 18bc, 25bccd }} | {{Val list|legend=1| 3d, 4, 7, 18bc, 25bccd }} | ||
Line 35: | Line 38: | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 15/14, 22/21, 25/24 | |||
[ | Mapping: [{{val|1 1 2 2 2}}, {{val|0 2 1 3 5}}] | ||
POTE generator: ~5/4 = 342.125 | |||
{{Val list | Vals: {{Val list| 3de, 4e, 7 }} | ||
Badness: 0.019854 | Badness: 0.019854 | ||
== Eudicot == | === Eudicot === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 15/14, 25/24, 33/32 | |||
[ | Mapping: [{{val|1 1 2 2 4}}, {{val|0 2 1 3 -2}}] | ||
POTE generator: ~5/4 = 336.051 | |||
{{Val list | Vals: {{Val list| 3d, 4, 7, 18bc, 25bccd }} | ||
Badness: 0.027114 | Badness: 0.027114 | ||
=== 13-limit === | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 15/14, 25/24, 33/32, 40/39 | |||
[ | Mapping: [{{val|1 1 2 2 4 4}}, {{val|0 2 1 3 -2 -1}}] | ||
POTE generator: ~5/4 = 338.846 | |||
{{Val list | Vals: {{Val list| 3d, 4, 7, 25bccd, 32bccddef, 39bcccdddef }} | ||
Badness: 0.023828 | Badness: 0.023828 | ||
== Flat == | == Flat == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 21/20, 25/24 | [[Comma list]]: 21/20, 25/24 | ||
[[ | [[Mapping]]: [{{val|1 1 2 3}}, {{val|0 2 1 -1}}] | ||
{{Multival|legend=1|2 1 -1 -3 -7 -5}} | |||
[[POTE generator]]: ~5/4 = 331.916 | |||
{{ | {{Val list|legend=1| 3, 4, 7d, 11cd, 18bcddd }} | ||
[[Badness]]: 0.025381 | [[Badness]]: 0.025381 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 21/20, 25/24, 33/32 | Comma list: 21/20, 25/24, 33/32 | ||
Mapping: [{{val|1 1 2 3 4}}, {{val|0 2 1 -1 -2}}] | |||
POTE generator: ~5/4 = 337.532 | POTE generator: ~5/4 = 337.532 | ||
Vals: {{Val list| 3, 4, 7d }} | |||
Vals: {{ | |||
Badness: 0.024988 | Badness: 0.024988 | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 14/13, 21/20, 25/24, 33/32 | Comma list: 14/13, 21/20, 25/24, 33/32 | ||
Mapping: [{{val|1 1 2 3 4 4}}, {{val|0 2 1 -1 -2 -1}}] | |||
POTE generator: ~5/4 = 341.023 | POTE generator: ~5/4 = 341.023 | ||
Vals: {{Val list| 3, 4, 7d }} | |||
Vals: {{ | |||
Badness: 0.023420 | Badness: 0.023420 | ||
== Sharp == | == Sharp == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 25/24, 28/27 | [[Comma list]]: 25/24, 28/27 | ||
[[ | [[Mapping]]: [{{val|1 1 2 1}}, {{val|0 2 1 6}}] | ||
[[ | [[POTE generator]]: ~5/4 = 357.938 | ||
{{Multival|legend=1|2 1 6 -3 4 11}} | |||
{{ | {{Val list|legend=1| 3d, 7d, 10, 37cd, 47bccd, 57bccdd }} | ||
[[Badness]]: 0.028942 | [[Badness]]: 0.028942 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 28/27, 35/33 | Comma list: 25/24, 28/27, 35/33 | ||
Mapping: [{{val|1 1 2 1 2}}, {{val|0 2 1 6 5}}] | |||
POTE generator: ~5/4 = 356.106 | POTE generator: ~5/4 = 356.106 | ||
Vals: {{Val list| 3de, 7d, 10, 17d, 27cde }} | |||
Vals: {{ | |||
Badness: 0.022366 | Badness: 0.022366 | ||
== Decimal == | == Decimal == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 25/24, 49/48 | [[Comma list]]: 25/24, 49/48 | ||
[[ | [[Mapping]]: [{{val|2 0 3 4}}, {{val|0 2 1 1}}] | ||
{{Multival|legend=1|4 2 2 -6 -8 -1}} | |||
[[POTE generator]]: ~7/6 = 251.557 | |||
{{ | {{Val list|legend=1| 4, 10, 14c, 24c, 38ccd, 62cccdd }} | ||
[[Badness]]: 0.028334 | [[Badness]]: 0.028334 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 45/44, 49/48 | Comma list: 25/24, 45/44, 49/48 | ||
Mapping: [{{val|2 0 3 4 -1}}, {{val|0 2 1 1 5}}] | |||
POTE generator: ~7/6 = 253.493 | POTE generator: ~7/6 = 253.493 | ||
Vals: {{Val list| 10, 14c, 24c, 38ccd, 52cccde }} | |||
Vals: {{ | |||
Badness: 0.026712 | Badness: 0.026712 | ||
=== Decimated === | === Decimated === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 33/32, 49/48 | Comma list: 25/24, 33/32, 49/48 | ||
Mapping: [{{val|2 0 3 4 10}}, {{val|0 2 1 1 -2}}] | |||
POTE generator: ~7/6 = 255.066 | POTE generator: ~7/6 = 255.066 | ||
Vals: {{Val list| 4, 10e, 14c }} | |||
Vals: {{ | |||
Badness: 0.031456 | Badness: 0.031456 | ||
=== Decibel === | === Decibel === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 35/33, 49/48 | Comma list: 25/24, 35/33, 49/48 | ||
Mapping: [{{val|2 0 3 4 7}}, {{val|0 2 1 1 0}}] | |||
POTE generator: ~8/7 = 243.493 | POTE generator: ~8/7 = 243.493 | ||
Vals: {{Val list| 4, 6, 10 }} | |||
Vals: {{ | |||
Badness: 0.032385 | Badness: 0.032385 | ||
== Dichotic == | == Dichotic == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 25/24, 64/63 | [[Comma list]]: 25/24, 64/63 | ||
[[ | [[Mapping]]: [{{val|1 1 2 4}}, {{val|0 2 1 -4}}] | ||
{{Multival|legend=1|2 1 -4 -3 -12 -12}} | |||
[[POTE generator]]: ~5/4 = 356.264 | |||
{{ | {{Val list|legend=1| 3, 7, 10, 17, 27c, 37c, 64bccc }} | ||
[[Badness]]: 0.037565 | [[Badness]]: 0.037565 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 45/44, 64/63 | Comma list: 25/24, 45/44, 64/63 | ||
Mapping: [{{val|1 1 2 4 2}}, {{val|0 2 1 -4 5}}] | |||
POTE generator: ~5/4 = 354.262 | POTE generator: ~5/4 = 354.262 | ||
Vals: {{Val list| 7, 10, 17, 27ce, 44cce }} | |||
Vals: {{ | |||
Badness: 0.030680 | Badness: 0.030680 | ||
=== Dichosis === | === Dichosis === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 35/33, 64/63 | Comma list: 25/24, 35/33, 64/63 | ||
Mapping: [{{val|1 1 2 4 5}}, {{val|0 2 1 -4 -5}}] | |||
POTE generator: ~5/4 = 360.659 | POTE generator: ~5/4 = 360.659 | ||
Vals: {{Val list| 3, 7e, 10 }} | |||
Vals: {{ | |||
Badness: 0.041361 | Badness: 0.041361 | ||
== Jamesbond == | == Jamesbond == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 25/24, 81/80 | [[Comma list]]: 25/24, 81/80 | ||
[[ | [[Mapping]]: [{{val|7 11 16 0}}, {{val|0 0 0 1}}] | ||
{{Multival|legend=1|0 0 7 0 11 16}} | |||
[[POTE generator]]: ~8/7 = 258.139 | |||
{{ | {{Val list|legend=1| 7, 14c }} | ||
[[Badness]]: 0.041714 | [[Badness]]: 0.041714 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 33/32, 45/44 | Comma list: 25/24, 33/32, 45/44 | ||
Mapping: [{{val|7 11 16 0 24}}, {{val|0 0 0 1 0}}] | |||
POTE generator: ~8/7 = 258.910 | POTE generator: ~8/7 = 258.910 | ||
Vals: {{Val list| 7, 14c }} | |||
Vals: {{ | |||
Badness: 0.023524 | Badness: 0.023524 | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 25/24, 27/26, 33/32, 40/39 | Comma list: 25/24, 27/26, 33/32, 40/39 | ||
Mapping: [{{val|7 11 16 0 24 26}}, {{val|0 0 0 1 0 0}}] | |||
POTE generator: ~8/7 = 250.764 | POTE generator: ~8/7 = 250.764 | ||
Vals: {{Val list| 7, 14c }} | |||
Vals: {{ | |||
Badness: 0.023003 | Badness: 0.023003 | ||
=== Septimal === | === Septimal === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 25/24, 33/32, 45/44, 65/63 | Comma list: 25/24, 33/32, 45/44, 65/63 | ||
Mapping: [{{val|7 11 16 0 24 6}}, {{val|0 0 0 1 0 1}}] | |||
POTE generator: ~8/7 = 247.445 | POTE generator: ~8/7 = 247.445 | ||
Vals: {{Val list| 7, 14cf }} | |||
Vals: {{ | |||
Badness: 0.022569 | Badness: 0.022569 | ||
== Sidi == | == Sidi == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 25/24, 245/243 | [[Comma list]]: 25/24, 245/243 | ||
[[ | [[Mapping]]: [{{val|1 3 3 6}}, {{val|0 -4 -2 -9}}] | ||
{{Multival|legend=1|4 2 9 -12 3 15}} | |||
[[POTE generator]]: ~9/7 = 427.208 | |||
{{ | {{Val list|legend=1| 3d, 14c, 45cc, 59bcccd }} | ||
[[Badness]]: 0.056586 | [[Badness]]: 0.056586 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 45/44, 99/98 | Comma list: 25/24, 45/44, 99/98 | ||
Mapping: [{{val|1 3 3 6 7}}, {{val|0 -4 -2 -9 -10}}] | |||
POTE generator: ~9/7 = 427.273 | POTE generator: ~9/7 = 427.273 | ||
Vals: {{Val list| 3de, 14c, 45cce, 59bcccdee }} | |||
Vals: {{ | |||
Badness: 0.032957 | Badness: 0.032957 | ||
== Quad == | == Quad == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 9/8, 25/24 | [[Comma list]]: 9/8, 25/24 | ||
[[ | [[Mapping]]: [{{val|4 6 9 0}}, {{val|0 0 0 1}}] | ||
{{Multival|legend=1|0 0 4 0 6 9}} | |||
[[POTE generator]]: ~8/7 = 324.482 | |||
{{ | {{Val list|legend=1| 4 }} | ||
[[Badness]]: 0.045911 | [[Badness]]: 0.045911 |
Revision as of 09:56, 6 June 2021
The 5-limit parent comma for the dicot family is 25/24, the chromatic semitone. Its monzo is [-3 -1 2⟩, and flipping that yields ⟨⟨2 1 -3]] for the wedgie. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are 7EDO, 24EDO using the val ⟨24 38 55] (24c) and 31EDO using the val ⟨31 49 71] (31c). In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all. In other words, it is an exotemperament.
Seven limit children
The second comma of the normal comma list defines which 7-limit family member we are looking at. Septimal dicot, with wedgie ⟨⟨2 1 3 -3 -1 4]] adds 36/35, sharp with wedgie ⟨⟨2 1 6 -3 4 11]] adds 28/27, and dichotic with wedgie ⟨⟨2 1 -4 -3 -12 -12]] ads 64/63, all retaining the same period and generator. Decimal with wedgie ⟨⟨4 2 2 -6 -8 -1]] adds 49/48, sidi with wedgie ⟨⟨4 2 9 -3 6 15]] adds 245/243, and jamesbond with wedgie ⟨⟨0 0 7 0 11 16]] adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.
Dicot
Subgroup: 2.3.5
Comma list: 25/24
Mapping: [⟨1 1 2], ⟨0 2 1]]
POTE generator: ~5/4 = 348.594
- Diamond monotone range: ~5/4 = [300.000, 400.000] (1\4 to 1\3)
- Diamond tradeoff range: ~5/4 = [315.641, 386.314]
- Diamond monotone and tradeoff: ~5/4 = [315.641, 386.314]
Badness: 0.013028
7-limit
Subgroup: 2.3.5.7
Comma list: 15/14, 25/24
Mapping: [⟨1 1 2 2], ⟨0 2 1 3]]
Wedgie: ⟨⟨2 1 3 -3 -1 4]]
POTE generator: ~5/4 = 336.381
Badness: 0.019935
11-limit
Subgroup: 2.3.5.7.11
Comma list: 15/14, 22/21, 25/24
Mapping: [⟨1 1 2 2 2], ⟨0 2 1 3 5]]
POTE generator: ~5/4 = 342.125
Vals: Template:Val list
Badness: 0.019854
Eudicot
Subgroup: 2.3.5.7.11
Comma list: 15/14, 25/24, 33/32
Mapping: [⟨1 1 2 2 4], ⟨0 2 1 3 -2]]
POTE generator: ~5/4 = 336.051
Vals: Template:Val list
Badness: 0.027114
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 15/14, 25/24, 33/32, 40/39
Mapping: [⟨1 1 2 2 4 4], ⟨0 2 1 3 -2 -1]]
POTE generator: ~5/4 = 338.846
Vals: Template:Val list
Badness: 0.023828
Flat
Subgroup: 2.3.5.7
Comma list: 21/20, 25/24
Mapping: [⟨1 1 2 3], ⟨0 2 1 -1]]
Wedgie: ⟨⟨ 2 1 -1 -3 -7 -5 ]]
POTE generator: ~5/4 = 331.916
Badness: 0.025381
11-limit
Subgroup: 2.3.5.7.11
Comma list: 21/20, 25/24, 33/32
Mapping: [⟨1 1 2 3 4], ⟨0 2 1 -1 -2]]
POTE generator: ~5/4 = 337.532
Vals: Template:Val list
Badness: 0.024988
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 14/13, 21/20, 25/24, 33/32
Mapping: [⟨1 1 2 3 4 4], ⟨0 2 1 -1 -2 -1]]
POTE generator: ~5/4 = 341.023
Vals: Template:Val list
Badness: 0.023420
Sharp
Subgroup: 2.3.5.7
Comma list: 25/24, 28/27
Mapping: [⟨1 1 2 1], ⟨0 2 1 6]]
POTE generator: ~5/4 = 357.938
Wedgie: ⟨⟨ 2 1 6 -3 4 11 ]]
Badness: 0.028942
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 28/27, 35/33
Mapping: [⟨1 1 2 1 2], ⟨0 2 1 6 5]]
POTE generator: ~5/4 = 356.106
Vals: Template:Val list
Badness: 0.022366
Decimal
Subgroup: 2.3.5.7
Comma list: 25/24, 49/48
Mapping: [⟨2 0 3 4], ⟨0 2 1 1]]
Wedgie: ⟨⟨ 4 2 2 -6 -8 -1 ]]
POTE generator: ~7/6 = 251.557
Badness: 0.028334
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 49/48
Mapping: [⟨2 0 3 4 -1], ⟨0 2 1 1 5]]
POTE generator: ~7/6 = 253.493
Vals: Template:Val list
Badness: 0.026712
Decimated
Subgroup: 2.3.5.7.11
Comma list: 25/24, 33/32, 49/48
Mapping: [⟨2 0 3 4 10], ⟨0 2 1 1 -2]]
POTE generator: ~7/6 = 255.066
Vals: Template:Val list
Badness: 0.031456
Decibel
Subgroup: 2.3.5.7.11
Comma list: 25/24, 35/33, 49/48
Mapping: [⟨2 0 3 4 7], ⟨0 2 1 1 0]]
POTE generator: ~8/7 = 243.493
Vals: Template:Val list
Badness: 0.032385
Dichotic
Subgroup: 2.3.5.7
Comma list: 25/24, 64/63
Mapping: [⟨1 1 2 4], ⟨0 2 1 -4]]
Wedgie: ⟨⟨ 2 1 -4 -3 -12 -12 ]]
POTE generator: ~5/4 = 356.264
Badness: 0.037565
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 64/63
Mapping: [⟨1 1 2 4 2], ⟨0 2 1 -4 5]]
POTE generator: ~5/4 = 354.262
Vals: Template:Val list
Badness: 0.030680
Dichosis
Subgroup: 2.3.5.7.11
Comma list: 25/24, 35/33, 64/63
Mapping: [⟨1 1 2 4 5], ⟨0 2 1 -4 -5]]
POTE generator: ~5/4 = 360.659
Vals: Template:Val list
Badness: 0.041361
Jamesbond
Subgroup: 2.3.5.7
Comma list: 25/24, 81/80
Mapping: [⟨7 11 16 0], ⟨0 0 0 1]]
Wedgie: ⟨⟨ 0 0 7 0 11 16 ]]
POTE generator: ~8/7 = 258.139
Badness: 0.041714
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 33/32, 45/44
Mapping: [⟨7 11 16 0 24], ⟨0 0 0 1 0]]
POTE generator: ~8/7 = 258.910
Vals: Template:Val list
Badness: 0.023524
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 27/26, 33/32, 40/39
Mapping: [⟨7 11 16 0 24 26], ⟨0 0 0 1 0 0]]
POTE generator: ~8/7 = 250.764
Vals: Template:Val list
Badness: 0.023003
Septimal
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 33/32, 45/44, 65/63
Mapping: [⟨7 11 16 0 24 6], ⟨0 0 0 1 0 1]]
POTE generator: ~8/7 = 247.445
Vals: Template:Val list
Badness: 0.022569
Sidi
Subgroup: 2.3.5.7
Comma list: 25/24, 245/243
Mapping: [⟨1 3 3 6], ⟨0 -4 -2 -9]]
Wedgie: ⟨⟨ 4 2 9 -12 3 15 ]]
POTE generator: ~9/7 = 427.208
Badness: 0.056586
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 99/98
Mapping: [⟨1 3 3 6 7], ⟨0 -4 -2 -9 -10]]
POTE generator: ~9/7 = 427.273
Vals: Template:Val list
Badness: 0.032957
Quad
Subgroup: 2.3.5.7
Comma list: 9/8, 25/24
Mapping: [⟨4 6 9 0], ⟨0 0 0 1]]
Wedgie: ⟨⟨ 0 0 4 0 6 9 ]]
POTE generator: ~8/7 = 324.482
Badness: 0.045911