Syntonic–kleismic equivalence continuum: Difference between revisions
Jump to navigation
Jump to search
Tag: Undo |
No edit summary |
||
Line 17: | Line 17: | ||
| | | | ||
| {{monzo|-14 -19 19}} | | {{monzo|-14 -19 19}} | ||
|- | |||
| 1 | |||
| [[Countermeantone]] | |||
| | |||
| {{monzo|-10 -23 20}} | |||
|- | |||
| 2 | |||
| [[Sensi]] | |||
| [[78732/78125]] | |||
| {{monzo|2 9 -7}} | |||
|- | |||
| 3 | |||
| 19 & 169c | |||
| | |||
| {{monzo|2 31 -22}} | |||
|- | |||
| 4 | |||
| 19 & 162c | |||
| | |||
| {{monzo|-2 35 -23}} | |||
|- | |||
| 5 | |||
| [[Unicorn]] | |||
| [[1594323/1562500]] | |||
| {{monzo|-2 13 -8}} | |||
|- | |- | ||
| … | | … |
Revision as of 09:18, 14 March 2021
The syntonic-enneadecal equivalence continuum is a continuum of 5-limit temperaments which equate a number of syntonic commas (81/80) with the enneadeca ([-14 -19 19⟩).
All temperaments in the continuum satisfy (81/80)n ~ [-14 -19 19⟩. Varying n results in different temperaments listed in the table below. It converges to meantone as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 5-limit temperaments supported by 19edo (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of n is approximately 0.1309..., and temperaments having n near this value tend to be the most accurate ones.
n | Temperament | Comma | |
---|---|---|---|
Ratio | Monzo | ||
0 | Enneadecal | [-14 -19 19⟩ | |
1 | Countermeantone | [-10 -23 20⟩ | |
2 | Sensi | 78732/78125 | [2 9 -7⟩ |
3 | 19 & 169c | [2 31 -22⟩ | |
4 | 19 & 162c | [-2 35 -23⟩ | |
5 | Unicorn | 1594323/1562500 | [-2 13 -8⟩ |
… | … | … | … |
∞ | Meantone | 81/80 | [-4 4 -1⟩ |