37edf: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''37EDF''' is the equal division of the just perfect fifth into 37 parts of 18.9718 cents each, corresponding to 63.2519 edo (similar to every fourth ste..." Tags: Mobile edit Mobile web edit |
No edit summary Tags: Mobile edit Mobile web edit |
||
Line 1: | Line 1: | ||
'''37EDF''' is the [[EDF|equal division of the just perfect fifth]] into 37 parts of 18.9718 [[cent|cents]] each, corresponding to 63.2519 [[edo]] (similar to every fourth step of [[253edo]]). It is related to the regular temperament which tempers out 385/384, 12005/11979, and 820125/819896 in the 11-limit, which is supported by [[63edo]], [[190edo]], and [[253edo]] among others. | '''37EDF''' is the [[EDF|equal division of the just perfect fifth]] into 37 parts of 18.9718 [[cent|cents]] each, corresponding to 63.2519 [[edo]] (similar to every fourth step of [[253edo]]). It is related to the regular temperament which tempers out 385/384, 12005/11979, and 820125/819896 in the 11-limit, which is supported by [[63edo]], [[190edo]], and [[253edo]] among others. | ||
==Intervals== | |||
{| class="wikitable" | |||
|- | |||
! | degree | |||
! | cents value | |||
! | corresponding <br>JI intervals | |||
! | comments | |||
|- | |||
| | 0 | |||
| | 0.0000 | |||
| | '''exact [[1/1]]''' | |||
| | | |||
|- | |||
| | 1 | |||
| | 18.9718 | |||
| | | |||
| | | |||
|- | |||
| | 2 | |||
| | 37.9435 | |||
| | [[45/44]] | |||
| | | |||
|- | |||
| | 3 | |||
| | 56.9153 | |||
| | | |||
| | | |||
|- | |||
| | 4 | |||
| | 75.8870 | |||
| | | |||
| | | |||
|- | |||
| | 5 | |||
| | 94.8588 | |||
| | | |||
| | | |||
|- | |||
| | 6 | |||
| | 113.8305 | |||
| | [[16/15]] | |||
| | | |||
|- | |||
| | 7 | |||
| | 132.8023 | |||
| | | |||
| | | |||
|- | |||
| | 8 | |||
| | 151.7741 | |||
| | [[12/11]] | |||
| | | |||
|- | |||
| | 9 | |||
| | 170.7458 | |||
| | | |||
| | | |||
|- | |||
| | 10 | |||
| | 189.7176 | |||
| | | |||
| | | |||
|- | |||
| | 11 | |||
| | 208.6893 | |||
| | | |||
| | | |||
|- | |||
| | 12 | |||
| | 227.6611 | |||
| | | |||
| | | |||
|- | |||
| | 13 | |||
| | 246.6328 | |||
| | [[15/13]] | |||
| | | |||
|- | |||
| | 14 | |||
| | 265.6046 | |||
| | [[7/6]] | |||
| | | |||
|- | |||
| | 15 | |||
| | 284.5764 | |||
| | 33/28 | |||
| | | |||
|- | |||
| | 16 | |||
| | 303.5481 | |||
| | 81/68 | |||
| | | |||
|- | |||
| | 17 | |||
| | 322.5199 | |||
| | | |||
| | | |||
|- | |||
| | 18 | |||
| | 341.4916 | |||
| | | |||
| | | |||
|- | |||
| | 19 | |||
| | 360.4634 | |||
| | | |||
| | | |||
|- | |||
| | 20 | |||
| | 379.4351 | |||
| | | |||
| | | |||
|- | |||
| | 21 | |||
| | 398.4069 | |||
| | 34/27 | |||
| | | |||
|- | |||
| | 22 | |||
| | 417.3786 | |||
| | [[14/11]] | |||
| | | |||
|- | |||
| | 23 | |||
| | 436.3504 | |||
| | [[9/7]] | |||
| | | |||
|- | |||
| | 24 | |||
| | 455.3222 | |||
| | [[13/10]] | |||
| | | |||
|- | |||
| | 25 | |||
| | 474.2939 | |||
| | | |||
| | | |||
|- | |||
| | 26 | |||
| | 493.2657 | |||
| | | |||
| | | |||
|- | |||
| | 27 | |||
| | 512.2374 | |||
| | | |||
| | | |||
|- | |||
| | 28 | |||
| | 531.2092 | |||
| | | |||
| | | |||
|- | |||
| | 29 | |||
| | 550.1809 | |||
| | [[11/8]] | |||
| | | |||
|- | |||
| | 30 | |||
| | 569.1527 | |||
| | | |||
| | | |||
|- | |||
| | 31 | |||
| | 588.1245 | |||
| | [[45/32]] | |||
| | | |||
|- | |||
| | 32 | |||
| | 607.0962 | |||
| | | |||
| | | |||
|- | |||
| | 33 | |||
| | 626.0680 | |||
| | | |||
| | | |||
|- | |||
| | 34 | |||
| | 645.0397 | |||
| | | |||
| | | |||
|- | |||
| | 35 | |||
| | 664.0115 | |||
| | [[22/15]] | |||
| | | |||
|- | |||
| | 36 | |||
| | 682.9832 | |||
| | | |||
| | | |||
|- | |||
| | 37 | |||
| | 701.9550 | |||
| | '''exact [[3/2]]''' | |||
| | just perfect fifth | |||
|} | |||
==Related regular temperaments== | |||
===7-limit 63&190=== | |||
Commas: 2460375/2458624, 514714375/509607936 | |||
POTE generator: ~1728/1715 = 18.957 | |||
Map: [<1 1 3 2|, <0 37 -43 51|] | |||
EDOs: 63, 190, 253 | |||
===11-limit 63&190=== | |||
Commas: 385/384, 12005/11979, 820125/819896 | |||
POTE generator: ~99/98 = 18.957 | |||
Map: [<1 1 3 2 3|, <0 37 -43 51 29|] | |||
EDOs: 63, 190, 253 | |||
===13-limit 63&190=== | |||
Commas: 385/384, 1575/1573, 2200/2197, 4459/4455 | |||
POTE generator: ~99/98 = 18.959 | |||
Map: [<1 1 3 2 3 4|, <0 37 -43 51 29 -19|] | |||
EDOs: 63, 190, 253 | |||
[[Category:Edf]] | [[Category:Edf]] | ||
[[Category:Edonoi]] | [[Category:Edonoi]] |
Revision as of 13:44, 10 February 2019
37EDF is the equal division of the just perfect fifth into 37 parts of 18.9718 cents each, corresponding to 63.2519 edo (similar to every fourth step of 253edo). It is related to the regular temperament which tempers out 385/384, 12005/11979, and 820125/819896 in the 11-limit, which is supported by 63edo, 190edo, and 253edo among others.
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | 0.0000 | exact 1/1 | |
1 | 18.9718 | ||
2 | 37.9435 | 45/44 | |
3 | 56.9153 | ||
4 | 75.8870 | ||
5 | 94.8588 | ||
6 | 113.8305 | 16/15 | |
7 | 132.8023 | ||
8 | 151.7741 | 12/11 | |
9 | 170.7458 | ||
10 | 189.7176 | ||
11 | 208.6893 | ||
12 | 227.6611 | ||
13 | 246.6328 | 15/13 | |
14 | 265.6046 | 7/6 | |
15 | 284.5764 | 33/28 | |
16 | 303.5481 | 81/68 | |
17 | 322.5199 | ||
18 | 341.4916 | ||
19 | 360.4634 | ||
20 | 379.4351 | ||
21 | 398.4069 | 34/27 | |
22 | 417.3786 | 14/11 | |
23 | 436.3504 | 9/7 | |
24 | 455.3222 | 13/10 | |
25 | 474.2939 | ||
26 | 493.2657 | ||
27 | 512.2374 | ||
28 | 531.2092 | ||
29 | 550.1809 | 11/8 | |
30 | 569.1527 | ||
31 | 588.1245 | 45/32 | |
32 | 607.0962 | ||
33 | 626.0680 | ||
34 | 645.0397 | ||
35 | 664.0115 | 22/15 | |
36 | 682.9832 | ||
37 | 701.9550 | exact 3/2 | just perfect fifth |
Related regular temperaments
7-limit 63&190
Commas: 2460375/2458624, 514714375/509607936
POTE generator: ~1728/1715 = 18.957
Map: [<1 1 3 2|, <0 37 -43 51|]
EDOs: 63, 190, 253
11-limit 63&190
Commas: 385/384, 12005/11979, 820125/819896
POTE generator: ~99/98 = 18.957
Map: [<1 1 3 2 3|, <0 37 -43 51 29|]
EDOs: 63, 190, 253
13-limit 63&190
Commas: 385/384, 1575/1573, 2200/2197, 4459/4455
POTE generator: ~99/98 = 18.959
Map: [<1 1 3 2 3 4|, <0 37 -43 51 29 -19|]
EDOs: 63, 190, 253