21/16: Difference between revisions
mNo edit summary |
simplified links, precisions to 5 digits |
||
Line 3: | Line 3: | ||
| Ratio = 21/16 | | Ratio = 21/16 | ||
| Monzo = -4 1 0 1 | | Monzo = -4 1 0 1 | ||
| Cents = 470. | | Cents = 470.78091 | ||
| Name = septimal sub-fourth | | Name = septimal sub-fourth | ||
| Sound = jid_21_16_pluck_adu_dr220.mp3 | | Sound = jid_21_16_pluck_adu_dr220.mp3 | ||
| Color name = z4, zo 4th | | Color name = z4, zo 4th | ||
}} | }} | ||
21/16, the septimal sub-fourth, is an interval of the [[7-limit|7 prime-limit]] measuring approximately 470.8¢. It is a narrow fourth, differing from the Pythagorean perfect fourth of [[ | '''21/16''', the '''septimal sub-fourth''', is an interval of the [[7-limit|7 prime-limit]] measuring approximately 470.8¢. It is a narrow fourth, differing from the Pythagorean perfect fourth of [[4/3]] by [[64/63]], a microtone of approximately 27.3¢. It can be treated as the 21st overtone, octave reduced. Since 21 is 3*7, 21 can be also treated as the 3rd harmonic above the 7th or the 7th harmonic above the 3rd, or both. This identity can be made clear in a chord such as 8:12:14:21, which has a just perfect fifth of [[3/2]] between 8 and 12 as well as between 14 and 21. There are also two harmonic sevenths ([[7/4]]) in this chord, between 8 and 14 and between 12 and 21. The voicing of this chord is significant, as 3/2 sounds more consonant than its inversion 4/3 and 21/8 (an octave above 21/16) sounds more consonant than 21/16. | ||
21/16 is [[ | 21/16 is [[21/20]] away from [[5/4]]. This is an interval of about 84.5¢, a small semitone. This introduces the possibility of treating 21/16 as a dissonance to resolve down to 5/4. It can just as easily step up to 3/2 by [[8/7]], the septimal supermajor 2nd of about 231.2¢, a consonance in its own right. In an [[11-limit]] system, [[11/8]] is also nearby, so that 21/16 can step up by the small semitone of [[22/21]] (about 80.5¢) to 11/8. These are all movements that assume an unchanging fundamental, of course, and other movements are possible. | ||
The 7-limit is known for its subminor and supermajor 2nds, 3rds, 6ths and 7ths. 21/16 is also an essential interval of the 7-limit and worth distinguishing. | The 7-limit is known for its subminor and supermajor 2nds, 3rds, 6ths and 7ths. 21/16 is also an essential interval of the 7-limit and worth distinguishing. | ||
See | :''See also [[Gallery of Just Intervals]]'' | ||
[[Category: | |||
[[Category: | [[Category:7-limit]] | ||
[[Category: | [[Category:Fourth]] | ||
[[Category: | [[Category:Interval]] | ||
[[Category:Just interval]] | |||
[[Category:Ratio]] |
Revision as of 21:32, 23 October 2018
Interval information |
reduced harmonic
[sound info]
21/16, the septimal sub-fourth, is an interval of the 7 prime-limit measuring approximately 470.8¢. It is a narrow fourth, differing from the Pythagorean perfect fourth of 4/3 by 64/63, a microtone of approximately 27.3¢. It can be treated as the 21st overtone, octave reduced. Since 21 is 3*7, 21 can be also treated as the 3rd harmonic above the 7th or the 7th harmonic above the 3rd, or both. This identity can be made clear in a chord such as 8:12:14:21, which has a just perfect fifth of 3/2 between 8 and 12 as well as between 14 and 21. There are also two harmonic sevenths (7/4) in this chord, between 8 and 14 and between 12 and 21. The voicing of this chord is significant, as 3/2 sounds more consonant than its inversion 4/3 and 21/8 (an octave above 21/16) sounds more consonant than 21/16.
21/16 is 21/20 away from 5/4. This is an interval of about 84.5¢, a small semitone. This introduces the possibility of treating 21/16 as a dissonance to resolve down to 5/4. It can just as easily step up to 3/2 by 8/7, the septimal supermajor 2nd of about 231.2¢, a consonance in its own right. In an 11-limit system, 11/8 is also nearby, so that 21/16 can step up by the small semitone of 22/21 (about 80.5¢) to 11/8. These are all movements that assume an unchanging fundamental, of course, and other movements are possible.
The 7-limit is known for its subminor and supermajor 2nds, 3rds, 6ths and 7ths. 21/16 is also an essential interval of the 7-limit and worth distinguishing.
- See also Gallery of Just Intervals