166edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 300719332 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
The 166 equal temperament (in short 166-[[EDO|EDO]]) divides the [[Octave|octave]] into 166 equal steps of size 7.229 [[cent|cent]]s each. Its principle interest lies in the usefulness of its approximations; it tempers out 1600000/1594323, 225/224, 385/384, 540/539, 4000/3993, 325/324 and 729/728. It is an excellent tuning for the rank three temperament [[Marvel|marvel]], in both the [[11-limit|11-limit]] and in the 13-limit extension [[Marvel_family#Hecate|hecate]], and the rank two temperament wizard, which also tempers out 4000/3993, giving the [[Optimal_patent_val|optimal patent val]] for all of these. In the [[13-limit|13-limit]] it tempers out 325/324, leading to hecate, and 1573/1568, leading to marvell, and  tempering out both gives [[Marvel_temperaments|gizzard]], the 72&amp;94 temperament, for which 166 is an excellent tuning through the [[19-limit|19 limit]].
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-11 02:03:34 UTC</tt>.<br>
: The original revision id was <tt>300719332</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 166 equal temperament (in short 166-[[EDO]]) divides the [[octave]] into 166 equal steps of size 7.229 [[cent]]s each. Its principle interest lies in the usefulness of its approximations; it tempers out 1600000/1594323, 225/224, 385/384, 540/539, 4000/3993, 325/324 and 729/728. It is an excellent tuning for the rank three temperament [[marvel]], in both the [[11-limit]] and in the 13-limit extension [[Marvel family#Hecate|hecate]], and the rank two temperament wizard, which also tempers out 4000/3993, giving the [[optimal patent val]] for all of these. In the [[13-limit]] it tempers out 325/324, leading to hecate, and 1573/1568, leading to marvell, and  tempering out both gives [[Marvel temperaments|gizzard]], the 72&amp;94 temperament, for which 166 is an excellent tuning through the [[19-limit|19 limit]].


Its prime factorization is 166 = [[2edo|2]] * [[83edo|83]].
Its prime factorization is 166 = [[2edo|2]] * [[83edo|83]].


166edo (as 83edo) contains a very good approximation of the [[7_4|harmonic 7th]]. It's 0.15121 [[cent]] flat of the just interval 7:4.
166edo (as 83edo) contains a very good approximation of the [[7/4|harmonic 7th]]. It's 0.15121 [[cent|cent]] flat of the just interval 7:4.


== Scales ==
== Scales ==
* [[prisun]]</pre></div>
<ul><li>[[prisun|prisun]]</li></ul>     [[Category:166edo]]
<h4>Original HTML content:</h4>
[[Category:edo]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;166edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 166 equal temperament (in short 166-&lt;a class="wiki_link" href="/EDO"&gt;EDO&lt;/a&gt;) divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 166 equal steps of size 7.229 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. Its principle interest lies in the usefulness of its approximations; it tempers out 1600000/1594323, 225/224, 385/384, 540/539, 4000/3993, 325/324 and 729/728. It is an excellent tuning for the rank three temperament &lt;a class="wiki_link" href="/marvel"&gt;marvel&lt;/a&gt;, in both the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; and in the 13-limit extension &lt;a class="wiki_link" href="/Marvel%20family#Hecate"&gt;hecate&lt;/a&gt;, and the rank two temperament wizard, which also tempers out 4000/3993, giving the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for all of these. In the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt; it tempers out 325/324, leading to hecate, and 1573/1568, leading to marvell, and  tempering out both gives &lt;a class="wiki_link" href="/Marvel%20temperaments"&gt;gizzard&lt;/a&gt;, the 72&amp;amp;94 temperament, for which 166 is an excellent tuning through the &lt;a class="wiki_link" href="/19-limit"&gt;19 limit&lt;/a&gt;.&lt;br /&gt;
[[Category:gizzard]]
&lt;br /&gt;
[[Category:marvel]]
Its prime factorization is 166 = &lt;a class="wiki_link" href="/2edo"&gt;2&lt;/a&gt; * &lt;a class="wiki_link" href="/83edo"&gt;83&lt;/a&gt;.&lt;br /&gt;
[[Category:theory]]
&lt;br /&gt;
[[Category:wizard]]
166edo (as 83edo) contains a very good approximation of the &lt;a class="wiki_link" href="/7_4"&gt;harmonic 7th&lt;/a&gt;. It's 0.15121 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt; flat of the just interval 7:4.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; Scales &lt;/h2&gt;
&lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/prisun"&gt;prisun&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

The 166 equal temperament (in short 166-EDO) divides the octave into 166 equal steps of size 7.229 cents each. Its principle interest lies in the usefulness of its approximations; it tempers out 1600000/1594323, 225/224, 385/384, 540/539, 4000/3993, 325/324 and 729/728. It is an excellent tuning for the rank three temperament marvel, in both the 11-limit and in the 13-limit extension hecate, and the rank two temperament wizard, which also tempers out 4000/3993, giving the optimal patent val for all of these. In the 13-limit it tempers out 325/324, leading to hecate, and 1573/1568, leading to marvell, and tempering out both gives gizzard, the 72&94 temperament, for which 166 is an excellent tuning through the 19 limit.

Its prime factorization is 166 = 2 * 83.

166edo (as 83edo) contains a very good approximation of the harmonic 7th. It's 0.15121 cent flat of the just interval 7:4.

Scales