Tetrahanson: Difference between revisions
Dummy index (talk | contribs) |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 5: | Line 5: | ||
== Interval chain == | == Interval chain == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |||
! Generators | ! Generators | ||
! Cents (CTE) | ! Cents (CTE) | ||
! Approximate ratios | ! Approximate ratios | ||
|- | |- | ||
| | | −7 | ||
| 1019.413 | | 1019.413 | ||
| [[9/5]] | | [[9/5]] | ||
|- | |- | ||
| | | −6 | ||
| 1902.354 | | 1902.354 | ||
| [[3/1]] | | [[3/1]] | ||
|- | |- | ||
| | | −5 | ||
| 385.295 | | 385.295 | ||
| [[5/4]] | | [[5/4]] | ||
|- | |- | ||
| | | −4 | ||
| 1268.236 | | 1268.236 | ||
| 25/12 | | 25/12 | ||
|- | |- | ||
| | | −3 | ||
| 2151.177 | | 2151.177 | ||
| 125/36 | | 125/36 | ||
|- | |- | ||
| | | −2 | ||
| 634.118 | | 634.118 | ||
| [[36/25]] | | [[36/25]] | ||
|- | |- | ||
| | | −1 | ||
| 1517.059 | | 1517.059 | ||
| [[12/5]] | | [[12/5]] | ||
Line 73: | Line 74: | ||
In tritave-repeating tetrahanson (3.4.5 subgroup), 36/25 actually represents 1\3edt, which makes the 3rd-tritave period. | In tritave-repeating tetrahanson (3.4.5 subgroup), 36/25 actually represents 1\3edt, which makes the 3rd-tritave period. | ||
=== b39 & b15 === | === {{nowrap|b39 & b15}} === | ||
This is restriction of [[catalan]] extension. This can maintain the structure of the 3rd-octave period in 3.4.5, 3.5.11, and 3.5.13. Well, 3.4.5 and 3.5.13, which do not include 7 nor 11 in their basis, should simply be called tetrahanson (and no-twos cata, respectively). | This is restriction of [[catalan]] extension. This can maintain the structure of the 3rd-octave period in 3.4.5, 3.5.11, and 3.5.13. Well, 3.4.5 and 3.5.13, which do not include 7 nor 11 in their basis, should simply be called tetrahanson (and no-twos cata, respectively). | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! !! 3.4.5 !! 3.5.11 !! 3.5.13 | ||
|- | |- | ||
| CWE || 883.071 || 879.416 || 883.808 | | CWE || 883.071 || 879.416 || 883.808 | ||
Line 92: | Line 93: | ||
{| class="wikitable center-1 right-2" | {| class="wikitable center-1 right-2" | ||
|+ Interval chain | |+ style="font-size: 105%;" | Interval chain | ||
|- | |- | ||
! rowspan="2" | # | ! rowspan="2" | # | ||
Line 106: | Line 107: | ||
! Approximate ratios | ! Approximate ratios | ||
|- | |- | ||
| | | −1 | ||
| 1656.6 | | 1656.6 | ||
| 125/48, [[13/5]] | | 125/48, [[13/5]] | ||
Line 159: | Line 160: | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ Chords | |+ style="font-size: 105%;" | Chords | ||
|- | |- | ||
! Mossteps !! Tonic and then every +2 mossteps | ! Mossteps !! Tonic and then every +2 mossteps | ||
Line 175: | Line 176: | ||
{| class="wikitable center-all left-4" | {| class="wikitable center-all left-4" | ||
|+ Tuning spectrum | |+ style="font-size: 105%;" | Tuning spectrum | ||
|- | |- | ||
! ET<br />generator | ! ET<br />generator |
Revision as of 14:40, 26 February 2025
The tetrahanson temperament is a nonoctave kleismic temperament, tempering out the kleisma in the 4.3.5 subgroup and repeating at the double octave 4/1. It is generated by 5/3 and, like in normal hanson temperament, 6 of them make a 4/3. Tetrahanson does not contain any 5-limit major or minor triads, but it does have different voicings of them (3:4:5 and 12:15:20), which, to a 12edo-accustomed listener, can make it sound like the root is the real root and the perfect fifth above it at the same time.
For technical information see Subgroup temperaments#Tetrahanson.
Interval chain
Generators | Cents (CTE) | Approximate ratios |
---|---|---|
−7 | 1019.413 | 9/5 |
−6 | 1902.354 | 3/1 |
−5 | 385.295 | 5/4 |
−4 | 1268.236 | 25/12 |
−3 | 2151.177 | 125/36 |
−2 | 634.118 | 36/25 |
−1 | 1517.059 | 12/5 |
0 | 0.000 | 1/1 |
1 | 882.941 | 5/3 |
2 | 1765.882 | 25/9 |
3 | 248.823 | 144/125 |
4 | 1131.764 | 48/25 |
5 | 2014.705 | 16/5 |
6 | 497.646 | 4/3 |
7 | 1380.587 | 20/9 |
Tetrahanson on tritave
In tritave-repeating tetrahanson (3.4.5 subgroup), 36/25 actually represents 1\3edt, which makes the 3rd-tritave period.
b39 & b15
This is restriction of catalan extension. This can maintain the structure of the 3rd-octave period in 3.4.5, 3.5.11, and 3.5.13. Well, 3.4.5 and 3.5.13, which do not include 7 nor 11 in their basis, should simply be called tetrahanson (and no-twos cata, respectively).
3.4.5 | 3.5.11 | 3.5.13 | |
---|---|---|---|
CWE | 883.071 | 879.416 | 883.808 |
Badness (Dirichlet) | 0.155 | 2.708 | 0.069 |
3.4.5.11 | 3.4.5.13 | 3.5.11.13 | |
CWE | 880.672 | 882.854 | 879.352 |
Badness (Dirichlet) | 0.384 | 0.066 | 0.44 |
# | Period 0 | Period 1 | Period 2 | |||
---|---|---|---|---|---|---|
Cents* | Approximate ratios | Cents* | Approximate ratios | Cents* | Approximate ratios | |
−1 | 1656.6 | 125/48, 13/5 | 388.6 | 5/4 | 1022.6 | 9/5 |
0 | 0.0 | 1/1 | 634.0 | 36/25, 13/9 | 1268.0 | 25/12, 27/13, 52/25 |
1 | 245.3 | 125/108, 15/13 | 879.3 | 5/3, 33/20 | 1513.3 | 12/5 |
2 | 490.7 | 4/3, 33/25 | 1124.7 | 48/25, 25/13 | 1758.7 | 25/9, 36/13, 11/4 |
3 | 736.0 | 20/13, 55/36 | 1370.0 | 20/9, 11/5 | 102.1 | 16/15, 55/52 |
4 | 981.4 | 16/9, 44/25 | 1615.4 | 64/25, 33/13 | 347.4 | 100/81, 16/13, 11/9 |
* In 3.5.11.13-subgroup 13-throdd-limit minimax tuning
- [1] – 15-note scale (Template:Sl, sLsLLsLsLLsLsLL)
Mossteps | Tonic and then every +2 mossteps |
---|---|
0-3-6 | 36:44:55 → 36:45:55 → 16:20:25 ↩↩ |
0-3-7 | 9:11:15 → 12:15:20 ↩↩ → 16:20:27 |
0-4-7 | 3:4:5 ↩↩ → 20:27:33 → 25:44:60 |
0-5-7 | 9:13:15 ↩↩↩ → 44:64:75 |
0-6-10 | 13:20:27 ↩ → 16:25:33 ↩↩ |
ET generator |
Eigenmonzo (unchanged-interval) |
Generator (¢) | Comments |
---|---|---|---|
11/4 | 875.659 | ||
11/5 | 877.658 | ||
18\39edt | 877.825 | ||
33/13 | 878.675 | ||
144/125 | 878.954 | ||
11/9 | 879.333 | 3.5.11.13-subgroup 13-throdd-limit minimax | |
43\93edt | 879.399 | ||
44/15 | 879.798 | ||
25\54edt | 880.534 | ||
5/4 | 881.656 | ||
36/13 | 881.691 | ||
15/13 | 881.726 | ||
32\69edt | 882.066 | ||
16/13 | 882.349 | ||
16/15 | 882.557 | ||
4/3 | 883.007 | 3.4.5-subgroup 5-throdd-limit minimax | |
5/3 | 884.359 | ||
125/108 | 887.061 | ||
7\15edt | 887.579 |