30edf: Difference between revisions
Jump to navigation
Jump to search
m Infobox ET added |
m Todo improve synopsis, add harmonics, make table collapsible |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{todo|improve synopsis|text=Make the synopsis longer, add a couple paragraphs about the practical music making properties of the tuning}} | |||
'''30EDF''' is the [[EDF|equal division of the just perfect fifth]] into 30 parts of 23.3985 [[cent|cents]] each, corresponding to 51.2853 [[edo]] (practically identical to every seventh step of [[359edo]]). | '''30EDF''' is the [[EDF|equal division of the just perfect fifth]] into 30 parts of 23.3985 [[cent|cents]] each, corresponding to 51.2853 [[edo]] (practically identical to every seventh step of [[359edo]]). | ||
==Harmonics== | |||
{{Harmonics in equal|30|3|2|intervals=prime}} | |||
{{Harmonics in equal|30|3|2|intervals=prime|start=12|collapsed=1}} | |||
==Intervals== | ==Intervals== | ||
{| class="wikitable" | {| class="wikitable mw-collapsible" | ||
|+ Intervals of 30edf | |||
|- | |- | ||
! | degree | ! | degree |
Revision as of 08:37, 18 December 2024
← 29edf | 30edf | 31edf → |
30EDF is the equal division of the just perfect fifth into 30 parts of 23.3985 cents each, corresponding to 51.2853 edo (practically identical to every seventh step of 359edo).
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.7 | -6.7 | -1.9 | +0.6 | -9.8 | +5.2 | +8.7 | +3.4 | +0.2 | -3.4 | -1.8 |
Relative (%) | -28.5 | -28.5 | -8.1 | +2.4 | -41.8 | +22.2 | +37.3 | +14.4 | +0.8 | -14.3 | -7.8 | |
Steps (reduced) |
51 (21) |
81 (21) |
119 (29) |
144 (24) |
177 (27) |
190 (10) |
210 (0) |
218 (8) |
232 (22) |
249 (9) |
254 (14) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.9 | +5.5 | -6.7 | +3.1 | +5.7 | +7.2 | -3.7 | -2.4 | -9.2 | -10.5 | -6.8 |
Relative (%) | -16.9 | +23.6 | -28.8 | +13.1 | +24.2 | +30.7 | -16.0 | -10.1 | -39.2 | -44.7 | -29.2 | |
Steps (reduced) |
267 (27) |
275 (5) |
278 (8) |
285 (15) |
294 (24) |
302 (2) |
304 (4) |
311 (11) |
315 (15) |
317 (17) |
323 (23) |
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 23.3985 | 76/75 | |
2 | 46.797 | 77/75 | |
3 | 70.1955 | 25/24 | |
4 | 93.594 | 19/18 | |
5 | 116.9925 | 15/14 | |
6 | 140.391 | 13/12 | |
7 | 163.7895 | 11/10 | |
8 | 187.188 | 39/35 | |
9 | 210.5865 | 35/31 | |
10 | 233.985 | 8/7 | |
11 | 257.3835 | 29/25 | |
12 | 280.782 | 20/17 | |
13 | 304.1805 | 31/26 | |
14 | 327.579 | 29/24 | |
15 | 350.9775 | 60/49, 49/40 | |
16 | 374.376 | 36/29 | |
17 | 397.7745 | 39/31 | |
18 | 421.173 | 51/40 | |
19 | 444.5715 | ||
20 | 467.97 | 21/16 | |
21 | 491.3685 | ||
22 | 514.767 | 35/26 | |
23 | 538.1655 | 15/11 | |
24 | 561.564 | 18/13 | |
25 | 584.9625 | 7/5 | |
26 | 608.361 | 27/19 | |
27 | 631.7595 | 36/25 | |
28 | 655.158 | ||
29 | 678.5565 | 40/27 | |
30 | 701.955 | exact 3/2 | just perfect fifth |
31 | 725.3535 | 38/25 | |
32 | 748.752 | 77/50 | |
33 | 772.1505 | 25/16 | |
34 | 795.549 | 19/12 | |
35 | 818.9475 | 45/28 | |
36 | 842.346 | 13/8 | |
37 | 865.7445 | 33/20 | |
38 | 889.143 | 117/70 | |
39 | 912.8415 | 105/62 | |
40 | 935.94 | 12/7 | |
41 | 959.3385 | 87/50 | |
42 | 982.737 | 30/17 | |
43 | 1006.1355 | 93/52 | |
44 | 1028.534 | 29/16 | |
45 | 1052.9325 | 90/49, 147/80 | |
46 | 1076.331 | 48/29 | |
47 | 1099.6995 | 117/62 | |
48 | 1123.128 | 153/80 | |
49 | 1146.5165 | ||
50 | 1169.925 | 63/32 | |
51 | 1193.3435 | ||
52 | 1215.722 | 105/52 | |
53 | 1240.1205 | 45/22 | |
54 | 1263.519 | 27/13 | |
55 | 1286.9175 | 21/10 | |
56 | 1310.316 | 81/38 | |
57 | 1333.7145 | 54/25 | |
58 | 1357.113 | ||
59 | 1380.5115 | 20/9 | |
60 | 1403.91 | exact 9/4 |