248edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
No edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
Line 14: Line 14:


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{{comma basis begin}}
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning Error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 58: Line 50:
| 0.275
| 0.275
| 5.69
| 5.69
|}
{{comma basis end}}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{{rank-2 begin}}
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>Ratio*
! Temperaments
|-
|-
| 1
| 1
Line 82: Line 68:
|-
|-
| 2
| 2
| 77\248<br>(47\248)
| 77\248<br />(47\248)
| 372.58<br>(227.42)
| 372.58<br />(227.42)
| 26/21<br>(154/135)
| 26/21<br />(154/135)
| [[Essence]]
| [[Essence]]
|-
|-
Line 94: Line 80:
|-
|-
| 8
| 8
| 117\248<br>(7\248)
| 117\248<br />(7\248)
| 566.13<br>(33.87)
| 566.13<br />(33.87)
| 104/75<br>(49/48)
| 104/75<br />(49/48)
| [[Octowerck]]
| [[Octowerck]]
|-
|-
| 31
| 31
| 103\248<br>(1\248)
| 103\248<br />(1\248)
| 498.39<br>(4.84)
| 498.39<br />(4.84)
| 4/3<br>(385/384)
| 4/3<br />(385/384)
| [[Birds]]
| [[Birds]]
|}
{{rank-2 end}}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
{{orf}}


[[Category:Bischismic]]
[[Category:Bischismic]]
[[Category:Essence]]
[[Category:Essence]]

Revision as of 04:29, 16 November 2024

← 247edo 248edo 249edo →
Prime factorization 23 × 31
Step size 4.83871 ¢ 
Fifth 145\248 (701.613 ¢)
Semitones (A1:m2) 23:19 (111.3 ¢ : 91.94 ¢)
Consistency limit 11
Distinct consistency limit 11

Template:EDO intro

Theory

248 = 8 × 31, and 248edo shares the mapping of harmonics 5 and 7 with 31edo. It has a decent 13-limit interpretation despite not being consistent. The equal temperament tempers out 32805/32768 in the 5-limit; 3136/3125 and 420175/419904 in the 7-limit; 441/440, 8019/8000 in the 11-limit; 729/728, 847/845, 1001/1000, 1575/1573 and 2200/2197 in the 13-limit. It also notably tempers out the quartisma. 248edo, additionally, has the interesting property of its mapping for all prime harmonics 3 to 23 being a multiple of 3, and therefore derived from 131edt.

It supports the bischismic temperament, providing the optimal patent val for 11-limit bischismic, and excellent tunings in the 7- and 13-limits. It also provides the optimal patent val for the essence temperament. It is notable for its combination of precise intonation with an abundance of essentially tempered chords.

Prime harmonics

Approximation of prime harmonics in 248edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.34 +0.78 -1.08 +0.29 +1.41 +1.50 -2.35 +0.76 +1.07 +1.74
Relative (%) +0.0 -7.1 +16.2 -22.4 +6.1 +29.1 +30.9 -48.6 +15.7 +22.1 +35.9
Steps
(reduced)
248
(0)
393
(145)
576
(80)
696
(200)
858
(114)
918
(174)
1014
(22)
1053
(61)
1122
(130)
1205
(213)
1229
(237)

Subsets and supersets

Since 248 factors into 23 × 31, 248edo has subset edos 2, 4, 8, 31, 62, and 124.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [287 -181 | [248 393]] | +0.108 | 0.108 | 2.23 |- | 2.3.5 | 32805/32768, [12 32 -27 | [248 393 576]] | -0.041 | 0.228 | 4.70 |- | 2.3.5.7 | 3136/3125, 32805/32768, 420175/419904 | [248 393 576 696]] | +0.066 | 0.270 | 5.58 |- | 2.3.5.7.11 | 441/440, 3136/3125, 8019/8000, 41503/41472 | [248 393 576 696 858]] | +0.036 | 0.249 | 5.15 |- | 2.3.5.7.11.13 | 441/440, 729/728, 847/845, 1001/1000, 3136/3125 | [248 393 576 696 858 918]] | +0.079 | 0.275 | 5.69 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 5\248 | 24.19 | 686/675 | Sengagen |- | 1 | 103\248 | 498.39 | 4/3 | Helmholtz |- | 2 | 77\248
(47\248) | 372.58
(227.42) | 26/21
(154/135) | Essence |- | 2 | 103\248 | 498.39 | 4/3 | Bischismic |- | 8 | 117\248
(7\248) | 566.13
(33.87) | 104/75
(49/48) | Octowerck |- | 31 | 103\248
(1\248) | 498.39
(4.84) | 4/3
(385/384) | Birds Template:Rank-2 end Template:Orf