193edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Mark as stub
BudjarnLambeth (talk | contribs)
m Intro inter harm
Line 1: Line 1:
{{Stub}}
{{Infobox ET}}
{{Infobox ET}}
{{ED intro}}


== Intervals ==
{{Interval table}}


{{Stub}}
== Harmonics ==
{{Harmonics in equal
| steps = 193
| num = 3
| denom = 1
}}
{{Harmonics in equal
| steps = 193
| num = 3
| denom = 1
| start = 12
| collapsed = 1
}}

Revision as of 09:31, 5 October 2024

This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 192edt 193edt 194edt →
Prime factorization 193 (prime)
Step size 9.85469 ¢ 
Octave 122\193edt (1202.27 ¢)
Consistency limit 7
Distinct consistency limit 7

193 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 193edt or 193ed3), is a nonoctave tuning system that divides the interval of 3/1 into 193 equal parts of about 9.85 ¢ each. Each step represents a frequency ratio of 31/193, or the 193rd root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 9.85 6.74
2 19.71 13.47
3 29.56 20.21
4 39.42 26.94 44/43, 45/44
5 49.27 33.68 35/34, 36/35
6 59.13 40.41 30/29
7 68.98 47.15 26/25, 51/49
8 78.84 53.89 45/43, 68/65
9 88.69 60.62
10 98.55 67.36 18/17
11 108.4 74.09 33/31, 49/46
12 118.26 80.83
13 128.11 87.56 14/13
14 137.97 94.3 13/12
15 147.82 101.04 49/45
16 157.68 107.77 23/21
17 167.53 114.51 54/49
18 177.38 121.24 41/37
19 187.24 127.98 39/35, 49/44
20 197.09 134.72 28/25, 37/33, 65/58
21 206.95 141.45 62/55
22 216.8 148.19 17/15
23 226.66 154.92 49/43
24 236.51 161.66 39/34, 47/41
25 246.37 168.39
26 256.22 175.13 29/25, 51/44
27 266.08 181.87 7/6
28 275.93 188.6 34/29
29 285.79 195.34 46/39
30 295.64 202.07 51/43
31 305.5 208.81 37/31
32 315.35 215.54 6/5
33 325.2 222.28 35/29
34 335.06 229.02 17/14, 57/47
35 344.91 235.75
36 354.77 242.49 27/22
37 364.62 249.22
38 374.48 255.96 36/29
39 384.33 262.69
40 394.19 269.43 49/39, 54/43
41 404.04 276.17
42 413.9 282.9 47/37
43 423.75 289.64 23/18
44 433.61 296.37
45 443.46 303.11
46 453.32 309.84 13/10
47 463.17 316.58
48 473.03 323.32 46/35
49 482.88 330.05 41/31
50 492.73 336.79
51 502.59 343.52
52 512.44 350.26 39/29
53 522.3 356.99 23/17
54 532.15 363.73 34/25
55 542.01 370.47
56 551.86 377.2
57 561.72 383.94
58 571.57 390.67
59 581.43 397.41 7/5
60 591.28 404.15 38/27
61 601.14 410.88
62 610.99 417.62
63 620.85 424.35 63/44
64 630.7 431.09 36/25
65 640.55 437.82 42/29, 55/38
66 650.41 444.56
67 660.26 451.3 63/43
68 670.12 458.03
69 679.97 464.77
70 689.83 471.5
71 699.68 478.24
72 709.54 484.97
73 719.39 491.71 47/31
74 729.25 498.45
75 739.1 505.18 23/15
76 748.96 511.92 57/37
77 758.81 518.65
78 768.67 525.39
79 778.52 532.12
80 788.38 538.86
81 798.23 545.6 46/29
82 808.08 552.33
83 817.94 559.07
84 827.79 565.8
85 837.65 572.54
86 847.5 579.27 31/19
87 857.36 586.01
88 867.21 592.75
89 877.07 599.48
90 886.92 606.22
91 896.78 612.95
92 906.63 619.69
93 916.49 626.42
94 926.34 633.16
95 936.2 639.9
96 946.05 646.63 19/11
97 955.9 653.37 33/19
98 965.76 660.1
99 975.61 666.84
100 985.47 673.58
101 995.32 680.31
102 1005.18 687.05
103 1015.03 693.78
104 1024.89 700.52
105 1034.74 707.25
106 1044.6 713.99
107 1054.45 720.73 57/31
108 1064.31 727.46
109 1074.16 734.2
110 1084.02 740.93 43/23
111 1093.87 747.67
112 1103.73 754.4
113 1113.58 761.14
114 1123.43 767.88 44/23
115 1133.29 774.61
116 1143.14 781.35
117 1153 788.08 37/19
118 1162.85 794.82 45/23
119 1172.71 801.55
120 1182.56 808.29
121 1192.42 815.03
122 1202.27 821.76
123 1212.13 828.5
124 1221.98 835.23
125 1231.84 841.97 55/27
126 1241.69 848.7 43/21
127 1251.55 855.44
128 1261.4 862.18 29/14
129 1271.25 868.91 25/12
130 1281.11 875.65 44/21
131 1290.96 882.38
132 1300.82 889.12
133 1310.67 895.85
134 1320.53 902.59 15/7
135 1330.38 909.33
136 1340.24 916.06
137 1350.09 922.8
138 1359.95 929.53
139 1369.8 936.27
140 1379.66 943.01 51/23
141 1389.51 949.74 29/13
142 1399.37 956.48
143 1409.22 963.21
144 1419.08 969.95
145 1428.93 976.68
146 1438.78 983.42 62/27
147 1448.64 990.16 30/13
148 1458.49 996.89 65/28
149 1468.35 1003.63
150 1478.2 1010.36 54/23
151 1488.06 1017.1
152 1497.91 1023.83
153 1507.77 1030.57 43/18
154 1517.62 1037.31
155 1527.48 1044.04 29/12
156 1537.33 1050.78
157 1547.19 1057.51 22/9
158 1557.04 1064.25
159 1566.9 1070.98 42/17, 47/19
160 1576.75 1077.72
161 1586.6 1084.46 5/2
162 1596.46 1091.19
163 1606.31 1097.93 43/17
164 1616.17 1104.66
165 1626.02 1111.4
166 1635.88 1118.13 18/7
167 1645.73 1124.87 44/17
168 1655.59 1131.61
169 1665.44 1138.34 34/13
170 1675.3 1145.08
171 1685.15 1151.81 45/17
172 1695.01 1158.55
173 1704.86 1165.28
174 1714.72 1172.02 35/13
175 1724.57 1178.76 65/24
176 1734.43 1185.49 49/18
177 1744.28 1192.23 63/23
178 1754.13 1198.96
179 1763.99 1205.7 36/13
180 1773.84 1212.44 39/14
181 1783.7 1219.17
182 1793.55 1225.91 31/11
183 1803.41 1232.64 17/6
184 1813.26 1239.38
185 1823.12 1246.11 43/15
186 1832.97 1252.85 49/17
187 1842.83 1259.59 29/10
188 1852.68 1266.32 35/12
189 1862.54 1273.06 44/15
190 1872.39 1279.79
191 1882.25 1286.53
192 1892.1 1293.26
193 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 193edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +2.27 +0.00 +4.54 +2.56 +2.27 +1.48 -3.04 +0.00 +4.84 -2.49 +4.54
Relative (%) +23.1 +0.0 +46.1 +26.0 +23.1 +15.0 -30.8 +0.0 +49.1 -25.3 +46.1
Steps
(reduced)
122
(122)
193
(0)
244
(51)
283
(90)
315
(122)
342
(149)
365
(172)
386
(0)
405
(19)
421
(35)
437
(51)
Approximation of harmonics in 193edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +3.94 +3.75 +2.56 -0.77 +2.68 +2.27 -2.64 -2.75 +1.48 -0.22 +1.66
Relative (%) +40.0 +38.1 +26.0 -7.8 +27.2 +23.1 -26.8 -27.9 +15.0 -2.3 +16.8
Steps
(reduced)
451
(65)
464
(78)
476
(90)
487
(101)
498
(112)
508
(122)
517
(131)
526
(140)
535
(149)
543
(157)
551
(165)