Table of zeta-stretched edos: Difference between revisions
m →Table: Removed the word complete. The list cannot be complete because there are infinite possible edos (or at least an impractically large number). |
m →Table |
||
Line 13: | Line 13: | ||
=== Table === | === Table === | ||
This is a list of | This is a list of zeta peak-based octave tunings, which includes all EDOs up to 100 and certain noteworthy ones above 100. | ||
</noinclude>{| class="wikitable sortable" | </noinclude>{| class="wikitable sortable" | ||
|+ style="font-size: 105%;" | Zeta-optimal tunings for selected EDOs | |+ style="font-size: 105%;" | Zeta-optimal tunings for selected EDOs |
Revision as of 21:33, 16 September 2024
This table lists tuning instructions for equal divisions of the octave which have been stretched or compressed using optimal octave stretch based on zeta peaks, as described here: the Riemann zeta function and tuning.
No such table could possibly be complete (as there are so many possible edos), so please add tunings of interest as you see fit.
All of the tunings listed on this page are zeta peak index tunings, e.g. 1zpi, 2zpi, 3zpi... However, not all zeta peak index tunings are listed here - only those with intervals close to the octave. For a more complete table see: zeta peak index.
Calculation instructions
How to calculate the third column using the free version of Wolfram Cloud:
- Copy-paste
Plot[Abs[RiemannSiegelZ[9.06472028x]], {x, 11.9, 12.1}]
into a cell. - Change "11.9" and "12.1" to whatever values you want, e.g. to view the curve around 15edo you might use the values "14.9" and "15.1".
- Ensure that cell is still selected
- In the menu select Evaluation > Evaluate Cells
Table
This is a list of zeta peak-based octave tunings, which includes all EDOs up to 100 and certain noteworthy ones above 100.
Tuning | Associated edo | No. of steps per 1200 cents | Step size (cents) | Tuning of 2/1 (cents) | Gram point index |
---|---|---|---|---|---|
1zpi | 1edo | 1.127 | 1065.177 | 1065.177 | −1 |
2zpi | 2edo | 1.973 | 608.283 | 1216.565 | 0 |
4zpi | 3edo | 3.060 | 392.187 | 1176.562 | 2 |
6zpi | 4edo | 3.904 | 307.342 | 1229.367 | 4 |
9zpi | 5edo | 5.034 | 238.357 | 1191.783 | 7 |
12zpi | 6edo | 6.035 | 198.843 | 1193.056 | 10 |
15zpi | 7edo | 6.957 | 172.496 | 1207.471 | 13 |
19zpi | 8edo | 8.137 | 147.467 | 1179.734 | 17 |
22zpi | 9edo | 8.950 | 134.078 | 1206.705 | 20 |
26zpi | 10edo | 10.008 | 119.899 | 1198.986 | 24 |
30zpi | 11edo | 11.037 | 108.722 | 1195.938 | 28 |
34zpi | 12edo | 12.023 | 99.807 | 1197.686 | 32 |
38zpi | 13edo | 12.969 | 92.531 | 1202.900 | 36 |
42zpi | 14edo | 13.900 | 86.329 | 1208.611 | 40 |
47zpi | 15edo | 15.053 | 79.716 | 1195.736 | 45 |
51zpi | 16edo | 15.944 | 75.262 | 1204.187 | 49 |
56zpi | 17edo | 17.045 | 70.404 | 1196.861 | 54 |
61zpi | 18edo | 18.119 | 66.228 | 1192.113 | 59 |
65zpi | 19edo | 18.948 | 63.331 | 1203.288 | 63 |
70zpi | 20edo | 19.982 | 60.054 | 1201.087 | 68 |
75zpi | 21edo | 21.028 | 57.067 | 1198.406 | 73 |
80zpi | 22edo | 22.025 | 54.483 | 1198.630 | 78 |
84zpi | 23edo | 22.807 | 52.615 | 1210.148 | 82 |
90zpi | 24edo | 24.006 | 49.988 | 1199.713 | 88 |
95zpi | 25edo | 24.965 | 48.067 | 1201.678 | 93 |
100zpi | 26edo | 25.936 | 46.268 | 1202.975 | 98 |
106zpi | 27edo | 27.087 | 44.302 | 1196.163 | 104 |
111zpi | 28edo | 28.032 | 42.808 | 1198.629 | 109 |
116zpi | 29edo | 28.940 | 41.465 | 1202.489 | 114 |
122zpi | 30edo | 30.061 | 39.918 | 1197.555 | 120 |
127zpi | 31edo | 30.978 | 38.737 | 1200.837 | 125 |
133zpi | 32edo | 32.070 | 37.418 | 1197.375 | 131 |
138zpi | 33edo | 32.972 | 36.394 | 1201.009 | 136 |
144zpi | 34edo | 34.045 | 35.248 | 1198.419 | 142 |
149zpi | 35edo | 34.925 | 34.359 | 1202.564 | 147 |
155zpi | 36edo | 35.982 | 33.350 | 1200.587 | 153 |
161zpi | 37edo | 37.028 | 32.408 | 1199.108 | 159 |
166zpi | 38edo | 37.890 | 31.671 | 1203.480 | 164 |
173zpi | 39edo | 39.124 | 30.672 | 1196.204 | 171 |
178zpi | 40edo | 39.968 | 30.024 | 1200.965 | 176 |
184zpi | 41edo | 40.988 | 29.277 | 1200.349 | 182 |
190zpi | 42edo | 41.999 | 28.572 | 1200.032 | 188 |
196zpi | 43edo | 43.026 | 27.890 | 1199.261 | 194 |
202zpi | 44edo | 44.015 | 27.263 | 1199.579 | 200 |
207zpi | 45edo | 44.840 | 26.762 | 1204.289 | 205 |
214zpi | 46edo | 46.009 | 26.082 | 1199.766 | 212 |
220zpi | 47edo | 47.006 | 25.529 | 1199.846 | 218 |
226zpi | 48edo | 47.988 | 25.006 | 1200.292 | 224 |
233zpi | 49edo | 49.141 | 24.419 | 1196.552 | 231 |
238zpi | 50edo | 49.939 | 24.030 | 1201.477 | 236 |
245zpi | 51edo | 51.080 | 23.493 | 1198.128 | 243 |
251zpi | 52edo | 52.043 | 23.058 | 1199.018 | 249 |
257zpi | 53edo | 52.997 | 22.643 | 1200.072 | 255 |
264zpi | 54edo | 54.116 | 22.175 | 1197.430 | 262 |
269zpi | 55edo | 54.894 | 21.860 | 1202.325 | 267 |
276zpi | 56edo | 56.008 | 21.425 | 1199.821 | 274 |
282zpi | 57edo | 56.968 | 21.064 | 1200.668 | 280 |
289zpi | 58edo | 58.067 | 20.666 | 1198.621 | 287 |
295zpi | 59edo | 58.992 | 20.342 | 1200.157 | 293 |
301zpi | 60edo | 59.920 | 20.027 | 1201.599 | 299 |
308zpi | 61edo | 61.003 | 19.671 | 1199.937 | 306 |
314zpi | 62edo | 61.938 | 19.374 | 1201.200 | 312 |
321zpi | 63edo | 63.019 | 19.042 | 1199.633 | 319 |
328zpi | 64edo | 64.099 | 18.721 | 1198.140 | 326 |
334zpi | 65edo | 65.016 | 18.457 | 1199.708 | 332 |
340zpi | 66edo | 65.916 | 18.205 | 1201.533 | 338 |
347zpi | 67edo | 66.998 | 17.911 | 1200.029 | 345 |
354zpi | 68edo | 68.049 | 17.634 | 1199.131 | 352 |
360zpi | 69edo | 68.960 | 17.401 | 1200.696 | 358 |
367zpi | 70edo | 70.004 | 17.142 | 1199.931 | 365 |
374zpi | 71edo | 71.059 | 16.887 | 1198.998 | 372 |
380zpi | 72edo | 71.951 | 16.678 | 1200.824 | 378 |
387zpi | 73edo | 72.983 | 16.442 | 1200.273 | 385 |
394zpi | 74edo | 74.052 | 16.205 | 1199.155 | 392 |
401zpi | 75edo | 75.091 | 15.981 | 1198.544 | 399 |
407zpi | 76edo | 75.968 | 15.796 | 1200.503 | 405 |
414zpi | 77edo | 76.992 | 15.586 | 1200.127 | 412 |
420zpi | 78edo | 77.851 | 15.414 | 1202.292 | 418 |
427zpi | 79edo | 78.892 | 15.211 | 1201.637 | 425 |
435zpi | 80edo | 80.073 | 14.986 | 1198.904 | 433 |
441zpi | 81edo | 80.948 | 14.824 | 1200.777 | 439 |
448zpi | 82edo | 81.954 | 14.642 | 1200.671 | 446 |
455zpi | 83edo | 82.967 | 14.464 | 1200.484 | 453 |
462zpi | 84edo | 83.997 | 14.286 | 1200.040 | 460 |
469zpi | 85edo | 84.991 | 14.119 | 1200.131 | 467 |
476zpi | 86edo | 86.019 | 13.950 | 1199.741 | 474 |
483zpi | 87edo | 87.014 | 13.791 | 1199.808 | 481 |
490zpi | 88edo | 88.027 | 13.632 | 1199.635 | 488 |
497zpi | 89edo | 89.023 | 13.480 | 1199.691 | 495 |
504zpi | 90edo | 90.006 | 13.332 | 1199.917 | 502 |
510zpi | 91edo | 90.852 | 13.208 | 1201.956 | 508 |
518zpi | 92edo | 91.993 | 13.044 | 1200.089 | 516 |
525zpi | 93edo | 93.002 | 12.903 | 1199.969 | 523 |
532zpi | 94edo | 93.984 | 12.768 | 1200.208 | 530 |
540zpi | 95edo | 95.117 | 12.616 | 1198.526 | 538 |
546zpi | 96edo | 95.954 | 12.506 | 1200.570 | 544 |
553zpi | 97edo | 96.925 | 12.381 | 1200.927 | 551 |
560zpi | 98edo | 97.923 | 12.254 | 1200.941 | 558 |
568zpi | 99edo | 99.047 | 12.115 | 1199.427 | 566 |
575zpi | 100edo | 99.869 | 12.016 | 1201.577 | 573 |
1936zpi | 270edo | 270.018 | 4.444 | 1199.920 | 1934 |
2293zpi | 311edo | 311.004 | 3.858 | 1199.985 | 2291 |
2568zpi | 342edo | 341.975 | 3.509 | 1200.088 | 2566 |
3971zpi | 494edo | 494.014 | 2.429 | 1199.966 | 3969 |
5818zpi | 684edo | 683.939 | 1.755 | 1200.107 | 5816 |