Superpyth–22 equivalence continuum: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+alt name
+commas for fractional-numbered temps
Line 15: Line 15:
| 0
| 0
| 22 & 22c
| 22 & 22c
|  
| (22 digits)
| {{Monzo| 35 -22 }}
| {{Monzo| 35 -22 }}
|-
|-
| 1
| 1
| [[Quasisuper]]
| [[Quasisuper]]
| 8388608/7971615
| [[8388608/7971615]]
| {{Monzo| 23 -13 -1 }}
| {{Monzo| 23 -13 -1 }}
|-
|-
| 2
| 2
| [[Diaschismic]]
| [[Diaschismic]]
| 2048/2025
| [[2048/2025]]
| {{Monzo| 11 -4 -2 }}
| {{Monzo| 11 -4 -2 }}
|-
|-
| 3
| 3
| [[Porcupine]]
| [[Porcupine]]
| 250/243
| [[250/243]]
| {{Monzo| 1 -5 3 }}
| {{Monzo| 1 -5 3 }}
|-
|-
| 4
| 4
| [[Comic]]
| [[Comic]]
| 5120000/4782969
| [[5120000/4782969]]
| {{Monzo| 13 -14 4 }}
| {{Monzo| 13 -14 4 }}
|-
|-
|5
| 5
|22 & 3cc
| 22 & 3cc
|
| (23 digits)
| {{Monzo| 25 -23 5 }}
| {{Monzo| 25 -23 5 }}
|-
|-
Line 50: Line 50:
| ∞
| ∞
| [[Superpyth]]
| [[Superpyth]]
| 20480/19683
| [[20480/19683]]
| {{monzo| 12 -9 1 }}
| {{monzo| 12 -9 1 }}
|}
|}
Line 68: Line 68:
| 0
| 0
| 22 & 22c
| 22 & 22c
|  
| (22 digits)
| {{Monzo| 35 -22 }}
| {{Monzo| 35 -22 }}
|-
|-
| 1
| 1
| [[Superpyth]]
| [[Superpyth]]
| 20480/19683
| [[20480/19683]]
| {{Monzo| 12 -9 1 }}
| {{Monzo| 12 -9 1 }}
|-
|-
| 2
| 2
| [[Diaschismic]]
| [[Diaschismic]]
| 2048/2025
| [[2048/2025]]
| {{Monzo| 11 -4 -2 }}
| {{Monzo| 11 -4 -2 }}
|-
|-
| 3
| 3
| 22 & 29c
| 22 & 29c
|  
| (22 digits)
| {{Monzo| 34 -17 -3 }}
| {{Monzo| 34 -17 -3 }}
|-
|-
Line 93: Line 93:
| ∞
| ∞
| [[Quasisuper]]
| [[Quasisuper]]
| 8388608/7971615
| [[8388608/7971615]]
| {{Monzo| 23 -13 -1 }}
| {{Monzo| 23 -13 -1 }}
|}  
|}  
Line 100: Line 100:
|+ Temperaments with fractional ''n'' and ''m''
|+ Temperaments with fractional ''n'' and ''m''
|-
|-
! Temperament !! ''n'' !! ''m''
! ''n'' !! ''m'' !! Temperament !! Comma
|-
|-
| [[Hendecatonic]] || 11/5 = 2.2 || 11/6 = 1.8{{overline|3}}
| 11/5 = 2.2 || 11/6 = 1.8{{overline|3}} || [[Hendecatonic]] || {{monzo| 43 -11 -11 }}
|-
|-
| [[Escapade]] || 9/4 = 2.25 || 9/5 = 1.8
| 9/4 = 2.25 || 9/5 = 1.8 || [[Escapade]] || {{monzo| 32 -7 -9 }}
|-
|-
| [[Kwazy]] || 16/7 = 2.{{overline|285714}} || 16/9 = 1.{{overline|8}}
| 16/7 = 2.{{overline|285714}} || 16/9 = 1.{{overline|8}} || [[Kwazy]] || {{monzo| -53 10 16 }}
|-
|-
| [[Orson]] || 7/3 = 2.{{overline|3}} || 7/4 = 1.75
| 7/3 = 2.{{overline|3}} || 7/4 = 1.75 || [[Orson]] || {{monzo| -21 3 7 }}
|-
|-
| [[Magic]] || 5/2 = 2.5 || 5/3 = 1.{{overline|6}}
| 5/2 = 2.5 || 5/3 = 1.{{overline|6}} || [[Magic]] || {{monzo| -10 -1 5 }}
|}
|}


[[Category:22edo]]
[[Category:22edo]]
[[Category:Equivalence continua]]
[[Category:Equivalence continua]]

Revision as of 09:07, 23 July 2024

The superpyth-22 equivalence continuum is a continuum of 5-limit temperaments which equate a number of superpyth commas, 20480/19683 = [12 -9 1, with the 22-comma, [35 -22. This continuum is theoretically interesting in that these are all 5-limit temperaments supported by 22edo.

All temperaments in the continuum satisfy (20480/19683)n ~ 250/243. Varying n results in different temperaments listed in the table below. It converges to 5-limit superpyth as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 5-limit temperaments supported by 22edo due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them. The just value of n is approximately 2.284531…, and temperaments having n near this value tend to be the most accurate ones.

Temperaments in the continuum
n Temperament Comma
Ratio Monzo
0 22 & 22c (22 digits) [35 -22
1 Quasisuper 8388608/7971615 [23 -13 -1
2 Diaschismic 2048/2025 [11 -4 -2
3 Porcupine 250/243 [1 -5 3
4 Comic 5120000/4782969 [13 -14 4
5 22 & 3cc (23 digits) [25 -23 5
Superpyth 20480/19683 [12 -9 1

We may also invert the continuum by setting m such that 1/m + 1/n = 1. This may be called the quasisuper-22 equivalence continuum, which is essentially the same thing. The just value of m is 1.778495…

Temperaments in the continuum
m Temperament Comma
Ratio Monzo
0 22 & 22c (22 digits) [35 -22
1 Superpyth 20480/19683 [12 -9 1
2 Diaschismic 2048/2025 [11 -4 -2
3 22 & 29c (22 digits) [34 -17 -3
Quasisuper 8388608/7971615 [23 -13 -1
Temperaments with fractional n and m
n m Temperament Comma
11/5 = 2.2 11/6 = 1.83 Hendecatonic [43 -11 -11
9/4 = 2.25 9/5 = 1.8 Escapade [32 -7 -9
16/7 = 2.285714 16/9 = 1.8 Kwazy [-53 10 16
7/3 = 2.3 7/4 = 1.75 Orson [-21 3 7
5/2 = 2.5 5/3 = 1.6 Magic [-10 -1 5