443edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Music: linking
Rework; cleanup; clarify the title row of the rank-2 temp table
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|443}}
{{EDO intro|443}}
== Theory ==
== Theory ==
443et tempers out 67108864/66976875, [[6144/6125]] and [[32805/32768]] in the 7-limit; 806736/805255, 35156250/35153041, 759375/758912, [[131072/130977]], [[540/539]], 184549376/184528125, [[5632/5625]], [[8019/8000]], 160083/160000, 391314/390625, 202397184/201768035, 3294225/3294172 and 20614528/20588575 in the 11-limit.
443edo is in[[consistent]] to the [[5-odd-limit]] and the error of [[harmonic]] [[5/1|5]] is quite large. To start with, the [[patent val]] {{val| 443 702 '''1029''' '''1244''' '''1533''' }} as well as the 443cde [[val]] {{val| 443 702 '''1028''' '''1243''' '''1532''' }} are worth considering.
===Prime harmonics===
 
Using the patent val, the equal temperament [[tempering out|tempers out]] [[6144/6125]], [[32805/32768]], and 67108864/66976875 in the 7-limit; [[540/539]], [[5632/5625]], [[8019/8000]], and [[131072/130977]] in the 11-limit. It [[support]]s [[hemischis]], the 130 & 313 temperament.
 
=== Prime harmonics ===
{{Harmonics in equal|443}}
{{Harmonics in equal|443}}


===Subsets and supersets===
=== Subsets and supersets ===
443edo is the 86th [[prime edo]]. 886edo, which doubles it, gives a good correction until the 11-limit.
443edo is the 86th [[prime edo]]. 886edo, which doubles it, gives a good correction until the 11-limit.
==Regular temperament properties==
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
! colspan="2" | Tuning Error
|-
|-
![[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
|-
|-
|2.3
| 2.3
|{{monzo|-702 443}}
| {{monzo|-702 443}}
|{{val|443 702}}
| {{mapping| 443 702 }}
| 0.1183
| 0.1183
| 0.1183
| 0.1183
Line 31: Line 36:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(reduced)
! Generator*
! Cents<br>(reduced)
! Cents*
! Associated<br>ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-
|1
| 1
|92\443
| 92\443
|249.21
| 249.21
|81/70
| 15/13
|[[Hemischis]] (7-limit)
| [[Hemischis]] (443)
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct


== Music ==
== Music ==
; [[User:Francium|Francium]]
; [[User:Francium|Francium]]
* "Confusion" from ''HemischisMatic EP'' (2023) – [https://open.spotify.com/track/72Pc4tty5rlLazQXW3tcCe Spotify] | [https://francium223.bandcamp.com/track/confusion Bandcamp] | [https://youtu.be/et0Qd4YAEP4?si=yRYbMo8sVz1qRvEE YouTube] – [[hemischis]] in 443edo tuning
* "Confusion" from ''HemischisMatic EP'' (2023) – [https://open.spotify.com/track/72Pc4tty5rlLazQXW3tcCe Spotify] | [https://francium223.bandcamp.com/track/confusion Bandcamp] | [https://youtu.be/et0Qd4YAEP4?si=yRYbMo8sVz1qRvEE YouTube] – [[hemischis]] in 443edo tuning

Revision as of 07:55, 3 November 2023

← 442edo 443edo 444edo →
Prime factorization 443 (prime)
Step size 2.7088 ¢ 
Fifth 259\443 (701.58 ¢)
Semitones (A1:m2) 41:34 (111.1 ¢ : 92.1 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

Theory

443edo is inconsistent to the 5-odd-limit and the error of harmonic 5 is quite large. To start with, the patent val 443 702 1029 1244 1533] as well as the 443cde val 443 702 1028 1243 1532] are worth considering.

Using the patent val, the equal temperament tempers out 6144/6125, 32805/32768, and 67108864/66976875 in the 7-limit; 540/539, 5632/5625, 8019/8000, and 131072/130977 in the 11-limit. It supports hemischis, the 130 & 313 temperament.

Prime harmonics

Approximation of prime harmonics in 443edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.37 +1.05 +0.93 +1.28 -0.80 +0.69 +0.46 +0.17 -0.23 +0.79
Relative (%) +0.0 -13.8 +38.6 +34.2 +47.2 -29.5 +25.4 +16.8 +6.2 -8.6 +29.1
Steps
(reduced)
443
(0)
702
(259)
1029
(143)
1244
(358)
1533
(204)
1639
(310)
1811
(39)
1882
(110)
2004
(232)
2152
(380)
2195
(423)

Subsets and supersets

443edo is the 86th prime edo. 886edo, which doubles it, gives a good correction until the 11-limit.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-702 443 [443 702]] 0.1183 0.1183 4.37

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 92\443 249.21 15/13 Hemischis (443)

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Music

Francium