User:Moremajorthanmajor/3L 1s (perfect fifth-equivalent): Difference between revisions
No edit summary |
|||
Line 15: | Line 15: | ||
|+ | |+ | ||
Cents | Cents | ||
! colspan=" | ! colspan="2" |Notation | ||
!Supersoft | !Supersoft | ||
Line 29: | Line 29: | ||
!Semihard | !Semihard | ||
!Hard | ! Hard | ||
!Superhard | !Superhard | ||
Line 37: | Line 37: | ||
!Diatonic | !Diatonic | ||
! Napoli | ! Napoli | ||
!~15edf | !~15edf | ||
Line 60: | Line 57: | ||
|F# | |F# | ||
|1\15, 46.154 | |||
|1\11, 63.158 | |||
| 1\11 | |||
63 | |||
|2\18 | |2\18, 77.419 | ||
77 | |||
| rowspan="2" |1\7 | | rowspan="2" |1\7, 100 | ||
|3\17, 124.138 | |||
| | | 2\10, 141.176 | ||
|3\13, 163.{{Overline|63}} | |||
|3\13 | |||
163.{{Overline|63}} | |||
|- | |- | ||
Line 91: | Line 76: | ||
|Gb | |Gb | ||
|3\15, 138.462 | |||
|2\11. 126.316 | |||
|2\11 | |||
126 | |||
|3\18 | |3\18, 116.129 | ||
116 | |||
|2\17 | |2\17, 82.759 | ||
82 | |||
| 1\10 | |1\10, 70.588 | ||
70 | |||
|1\13 | |1\13, 54.{{Overline|54}} | ||
54.{{Overline|54}} | |||
|- | |- | ||
Line 118: | Line 93: | ||
|'''G''' | |'''G''' | ||
|'''4\15,''' '''184.615''' | |||
|'''3\11,''' '''189.474''' | |||
|'''3\11''' | |||
'''189 | |||
|'''5\18''' | |'''5\18,''' '''193.548''' | ||
'''193 | |||
|''' | |'''2\7,''' '''200''' | ||
''' | |||
|''' | |'''5\17,''' '''206.897''' | ||
''' | |||
|''' | |'''3\10,''' '''211.765''' | ||
'''218.{{Overline|18}}''' | |'''4\13,''' '''218.{{Overline|18}}''' | ||
|- | |- | ||
Line 150: | Line 112: | ||
|G# | |G# | ||
| 5\15, 230.769 | |||
|4\11, 252.632 | |||
|4\11 | |||
252 | |||
|7\18 | |7\18, 270.968 | ||
270 | |||
| rowspan="2" |3\7 | | rowspan="2" |3\7, 300 | ||
|8\17, 331.034 | |||
| | |5\10, 352.941 | ||
|7\13, 381.{{Overline|81}} | |||
| 7\13 | |||
381.{{Overline|81}} | |||
|- | |- | ||
Line 180: | Line 130: | ||
|Mib, Sib | |Mib, Sib | ||
| Ab | |Ab | ||
|7\15, 323.077 | |||
| | |5\11, 315.789 | ||
| | | 8\18, 309.677 | ||
| | |7\17, 289.655 | ||
| | | 4\10, 282.353 | ||
| | |5\13, 272.{{Overline|72}} | ||
| | |- | ||
| Mi, Si | |||
|Mi, Si | |||
|A | |A | ||
|8\15, 369.231 | |||
|6\11, 378.947 | |||
|6\11 | |||
378 | |||
| | | 10\18, 387.097 | ||
400 | |4\7, 400 | ||
|10\17 | |10\17, 413.793 | ||
413 | |||
| 6\10 | | 6\10, 423.529 | ||
423 | |||
|8\13 | |8\13, 436.{{Overline|36}} | ||
436.{{Overline|36}} | |||
|- | |- | ||
| Mi#, Si# | |Mi#, Si# | ||
|A# | |A# | ||
|9\15, 415.385 | |||
| rowspan="2" |7\11, 442.105 | |||
| rowspan="2" |7\11 | |||
442 | |||
|12\18 | |12\18, 464.516 | ||
464 | |||
|5\7 | | 5\7, 500 | ||
|13\17, 537.069 | |||
| | |8\10, 564.706 | ||
|11\13, 600 | |||
|11\13 | |||
600 | |||
|- | |- | ||
Line 269: | Line 185: | ||
|Fab, Dob | |Fab, Dob | ||
|Bbb | | Bbb | ||
| 10\15, 461.538 | |||
| 10\15 | |||
461 | |||
|11\18, 425.806 | |||
| | |4\7, 400 | ||
| | |9\17, 372.414 | ||
| | |5\10, 352.941 | ||
327.{{Overline|27}} | | 6\13, 327.{{Overline|27}} | ||
|- | |- | ||
Line 298: | Line 203: | ||
|'''Bb''' | |'''Bb''' | ||
|'''11\15,''' '''507.692''' | |||
|''' | |'''8\11,''' '''505.263''' | ||
''' | |||
|''' | |'''13\18,''' '''503.226''' | ||
''' | |||
|''' | |'''5\7, 500''' | ||
|''' | |'''12\17,''' '''496.552''' | ||
''' | |'''7\10,''' '''494.118''' | ||
|'''9\13,''' '''490.{{Overline|90}}''' | |||
|'''9\13''' | |||
'''490.{{Overline|90}}''' | |||
|- | |- | ||
Line 329: | Line 221: | ||
|Fa#, Do# | |Fa#, Do# | ||
| B | |B | ||
|12\15, 553.846 | |||
|12\15 | |||
553 | |||
|9\11 | |9\11, 568.421 | ||
568 | |||
|15\18 | | 15\18, 580.645 | ||
580 | |||
|6\7 | |6\7, 600 | ||
|15\17, 620.690 | |||
| | |9\10, 635.294 | ||
|12\13, 654.{{Overline|54}} | |||
|12\13 | |||
654.{{Overline|54}} | |||
|- | |- | ||
Line 361: | Line 241: | ||
|B# | |B# | ||
|13\15, 600 | |||
| | | rowspan="2" |10\11, 631.579 | ||
| | |17\18, 658.064 | ||
|7\7, 700 | |||
| | |18\17, 744.828 | ||
|11\10, 776.471 | |||
| | |15\13, 818.{{Overline|18}} | ||
|- | |||
|7\ | |Dob, Solb | ||
|Hb | |||
|14\15, 646.154 | |||
| 16\18, 619.355 | |||
|6\7, 600 | |||
|14\17, 579.310 | |||
|8\10, 564.706 | |||
|10\13, 545.{{Overline|45}} | |||
|- | |||
!Do, Sol | |||
!H | |||
!'''15\15,''' '''692.308''' | |||
!'''11\11,''' '''694.737''' | |||
!'''18\18,''' '''696.774''' | |||
!7\7, 700 | |||
!'''17\17,''' '''703.448''' | |||
!'''10\10,''' '''705.882''' | |||
!'''13\13,''' '''709.'''{{Overline|09}} | |||
|- | |- | ||
|Do#, Sol# | |||
|Η# | |||
|16\15, 738.462 | |||
|12\11, 757.895 | |||
|20\18, 774.194 | |||
| rowspan="2" |8\8, 800 | |||
|20\17, 827.586 | |||
|12\10, 847.059 | |||
|16\13, 872.{{Overline|72}} | |||
|- | |||
|Reb, Lab | |||
|Cb | |||
|18\15, 830.769 | |||
|13\11, 821.053 | |||
|21\18, 812.903 | |||
| 19\17, 786.207 | |||
|11\10, 776.471 | |||
|14\13, 763.{{Overline|63}} | |||
|- | |- | ||
| | |'''Re, La''' | ||
| | |'''C''' | ||
|'''19\15,''' '''876.923''' | |||
|'''14\11,''' '''884.211''' | |||
| | |'''23\18,''' '''890.323''' | ||
|'''9\5,''' '''900''' | |||
| | |'''22\17,''' '''910.345''' | ||
|'''13\10,''' '''917.647''' | |||
| | |'''17\13,''' '''927.{{Overline|27}}''' | ||
|- | |||
| | |Re#, La# | ||
| C# | |||
|20\15, 923.077 | |||
| | |15\11, 947.368 | ||
|25\18, 967.742 | |||
| | | rowspan="2" |10\7, 1000 | ||
|25\17, 1034.483 | |||
| | |15\10, 1058.824 | ||
|20\13, 1090.{{Overline|90}} | |||
|- | |- | ||
| | |Mib, Sib | ||
|Db | |||
|22\15, 1015.385 | |||
|16\11, 1010.526 | |||
| | |26\18, 1006.452 | ||
| | |24\17, 993.103 | ||
|14\10, 988.235 | |||
|13 | |18\13, 981.{{Overline|81}} | ||
|- | |||
| | |Mi, Si | ||
| D | |||
| 23\15, 1061.538 | |||
| | |17\11, 1073.684 | ||
|28\18, 1083.871 | |||
|11\ | |11\7, 1100 | ||
|27\17, 1117.241 | |||
| | | 16\10, 1129.412 | ||
|21\9, 1145.{{Overline|45}} | |||
|- | |- | ||
| | |Mi#, Si# | ||
| | |D# | ||
|24\15, 1107.923 | |||
| | | rowspan="2" |18\11, 1136.842 | ||
| | |||
| | |30\18, 1161.29 | ||
|12\7, 1200 | |||
| | | 30\17, 1241.379 | ||
|18\10, 1270.588 | |||
| | | 24\13, 1309.{{Overline|09}} | ||
|- | |||
| | | Fab, Dob | ||
|Ebb | |||
|25\15, 1153.846 | |||
| | |29\18, 1122.581 | ||
|11\7, 1100 | |||
| | |26\17, 1075.862 | ||
|15\10, 1058.824 | |||
| | |19\13, 1036.{{Overline|36}} | ||
|- | |- | ||
| | |'''Fa, Do''' | ||
| | |'''Eb''' | ||
|'''26\15,''' '''1200''' | |||
| | |'''19\11,''' '''1200''' | ||
|'''31\18,''' '''1200''' | |||
| | |'''12\7, 1200''' | ||
|'''29\17,''' '''1200''' | |||
| | |'''17\10,''' '''1200''' | ||
|'''22\13,''' '''1200''' | |||
| | |- | ||
|Fa#, Do# | |||
| | | E | ||
| 27\15, 1246.154 | |||
|20\11, 1263.158 | |||
| | |33\18, 1277.419 | ||
|13\7, 1300 | |||
| | |32\17, 1324.138 | ||
|19\10, 1341.176 | |||
|25\13, 1363.{{Overline|63}} | |||
|- | |- | ||
| | |Fax, Dox | ||
| | |E# | ||
| 28\15, 1292.308 | |||
| | |||
| rowspan="2" | 21\11, 1326.318 | |||
| | | 35\18, 1354.834 | ||
|14\7, 1400 | |||
| | |35\17, 1448.275 | ||
|21\10, 1482.353 | |||
| | |28\13, 1527.{{Overline|27}} | ||
|- | |- | ||
| | |Dob, Solb | ||
| | | Fb | ||
|29\15, 1338.462 | |||
| | |34\18, 1316.129 | ||
|13\7, 1300 | |||
|17 | |31\17, 1282.759 | ||
|18\10, 1270.588 | |||
| | |23\13, 1254.{{Overline|54}} | ||
|- | |||
!Do, Sol | |||
!F | |||
!30\15, 1384.615 | |||
! 22\11, 1389.473 | |||
!36\18, 1393.548 | |||
!14\7, 1400 | |||
!34\17, 1406.897 | |||
!20\10, 1411.765 | |||
!26\13, 1418.{{Overline|18}} | |||
|} | |||
{| class="wikitable" | |||
|+Cents | |||
! colspan="2" |Notation | |||
!Supersoft | |||
!Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
! Hard | |||
!Superhard | |||
|- | |- | ||
!Bijou | |||
!Hextone | |||
! ~15edf | |||
!~11edf | |||
!~18edf | |||
! ~7edf | |||
! ~17edf | |||
!~10edf | |||
!~13edf | |||
|- | |- | ||
|0#, D# | |||
| | |0#, G# | ||
| 1\15, 46.154 | |||
| | |1\11, 63.158 | ||
|2\18, 77.419 | |||
| | | rowspan="2" |1\7, 100 | ||
| | |3\17, 124.138 | ||
| | |2\10, 141.176 | ||
|3\13, 163.{{Overline|63}} | |||
|- | |||
|1b, 1c | |||
| | |1f | ||
|3\15, 138.462 | |||
| 2\11. 126.316 | |||
|3\18, 116.129 | |||
| | |2\17, 82.759 | ||
|1\10, 70.588 | |||
| 1\13, 54.{{Overline|54}} | |||
|- | |||
| | |'''1''' | ||
|'''1''' | |||
|'''4\15,''' '''184.615''' | |||
|'''3\11,''' '''189.474''' | |||
| | |'''5\18,''' '''193.548''' | ||
|'''2\7,''' '''200''' | |||
|'''5\17,''' '''206.897''' | |||
|'''3\10,''' '''211.765''' | |||
| | |'''4\13,''' '''218.{{Overline|18}}''' | ||
|- | |- | ||
| 1# | |||
| | |1# | ||
|5\15, 230.769 | |||
| | | 4\11, 252.632 | ||
|7\18, 270.968 | |||
| | | rowspan="2" |3\7, 300 | ||
| | |8\17, 331.034 | ||
|5\10, 352.941 | |||
| | | 7\13, 381.{{Overline|81}} | ||
|- | |||
|2b, 2c | |||
|2f | |||
| | |7\15, 323.077 | ||
|5\11, 315.789 | |||
| 8\18, 309.677 | |||
|7\17, 289.655 | |||
| | | 4\10, 282.353 | ||
|5\13, 272.{{Overline|72}} | |||
|- | |||
|2 | |||
| | |2 | ||
|8\15, 369.231 | |||
|6\11, 378.947 | |||
|10\18, 387.097 | |||
| | |4\7, 400 | ||
|10\17, 413.793 | |||
| 6\10, 423.529 | |||
|8\13, 436.{{Overline|36}} | |||
| | |||
| | |||
|- | |- | ||
|2# | |||
| | |2# | ||
| 9\15, 415.385 | |||
| | | rowspan="2" |7\11, 442.105 | ||
|12\18, 464.516 | |||
| | |5\7, 500 | ||
| | |13\17, 537.069 | ||
| | |8\10, 564.706 | ||
| 11\13, 600 | |||
|- | |||
|3b, 3c | |||
| | |3f | ||
|10\15, 461.538 | |||
|11\18, 425.806 | |||
| 4\7, 400 | |||
| | |9\17, 372.414 | ||
|5\10, 352.941 | |||
|6\13, 327.{{Overline|27}} | |||
|- | |||
|13 | |'''3''' | ||
|'''3''' | |||
|'''11\15,''' '''507.692''' | |||
|'''8\11,''' '''505.263''' | |||
| | |'''13\18,''' '''503.226''' | ||
|'''5\7, 500''' | |||
|'''12\17,''' '''496.552''' | |||
|'''7\10,''' '''494.118''' | |||
| | |'''9\13,''' '''490.{{Overline|90}}''' | ||
|- | |||
| 3# | |||
|3# | |||
| | | 12\15, 553.846 | ||
| 9\11, 568.421 | |||
|15\18, 580.645 | |||
| 6\7, 600 | |||
|15\17, 620.690 | |||
|9\10, 635.294 | |||
|12\13, 654.{{Overline|54}} | |||
|- | |- | ||
|3x | |||
| | |3x | ||
|13\15, 600 | |||
| | | rowspan="2" |10\11, 631.579 | ||
|17\18, 658.064 | |||
| | | 7\7, 700 | ||
|18\17, 744.828 | |||
|11\10, 776.471 | |||
|15\13, 818.{{Overline|18}} | |||
|- | |||
|4b, 4c | |||
| rowspan="2" | | |4f | ||
| 14\15, 646.154 | |||
|16\18, 619.355 | |||
| 6\7, 600 | |||
| | |14\17, 579.310 | ||
|8\10, 564.706 | |||
|10\13, 545.{{Overline|45}} | |||
|- | |||
| 14\ | !4 | ||
!4 | |||
!'''15\15,''' '''692.308''' | |||
!'''11\11,''' '''694.737''' | |||
| | !'''18\18,''' '''696.774''' | ||
!7\7, 700 | |||
!'''17\17,''' '''703.448''' | |||
!'''10\10,''' '''705.882''' | |||
!'''13\13,''' '''709.'''{{Overline|09}} | |||
|- | |- | ||
|4# | |||
| | |4# | ||
|16\15, 738.462 | |||
| | |12\11, 757.895 | ||
|20\18, 774.194 | |||
| | | rowspan="2" |8\8, 800 | ||
| | |20\17, 827.586 | ||
| | | 12\10, 847.059 | ||
|16\13, 872.{{Overline|72}} | |||
|- | |||
|5b, 5c | |||
| | |5 | ||
|18\15, 830.769 | |||
|13\11, 821.053 | |||
|21\18, 812.903 | |||
| | |19\17, 786.207 | ||
| 11\10, 776.471 | |||
|14\13, 763.{{Overline|63}} | |||
|- | |||
| | |'''5''' | ||
|'''5''' | |||
|'''19\15,''' '''876.923''' | |||
|'''14\11,''' '''884.211''' | |||
|18\ | |'''23\18,''' '''890.323''' | ||
|'''9\5,''' '''900''' | |||
|'''22\17,''' '''910.345''' | |||
|'''13\10,''' '''917.647''' | |||
| | |'''17\13,''' '''927.{{Overline|27}}''' | ||
|- | |||
|5# | |||
|5# | |||
|20\15, 923.077 | |||
| 15\11, 947.368 | |||
|25\18, 967.742 | |||
| rowspan="2" |10\7, 1000 | |||
|25\17, 1034.483 | |||
|15\10, 1058.824 | |||
|20\13, 1090.{{Overline|90}} | |||
|- | |- | ||
|6b, 6c | |||
|6f | |||
| 22\15, 1015.385 | |||
| 16\11, 1010.526 | |||
|26\18, 1006.452 | |||
|24\17, 993.103 | |||
|14\10, 988.235 | |||
|18\13, 981.{{Overline|81}} | |||
|- | |||
|6 | |||
|6 | |||
|23\15, 1061.538 | |||
| 17\11, 1073.684 | |||
|28\18, 1083.871 | |||
|11\7, 1100 | |||
|27\17, 1117.241 | |||
| 16\10, 1129.412 | |||
|21\9, 1145.{{Overline|45}} | |||
|- | |||
|6# | |||
|6# | |||
|24\15, 1107.923 | |||
| rowspan="2" | 18\11, 1136.842 | |||
|30\18, 1161.290 | |||
|12\7, 1200 | |||
|30\17, 1241.379 | |||
|18\10, 1270.588 | |||
|24\13, 1309.{{Overline|09}} | |||
|- | |- | ||
|7b, 7c | |||
| | |7f | ||
| 25\15, 1153.846 | |||
| | |29\18, 1122.581 | ||
|11\7, 1100 | |||
| | |26\17, 1075.862 | ||
| | | 15\10, 1058.824 | ||
| | |19\13, 1036.{{Overline|36}} | ||
|- | |||
|'''7''' | |||
|'''7''' | |||
| | |'''26\15,''' '''1200''' | ||
|'''19\11,''' '''1200''' | |||
|'''31\18,''' '''1200''' | |||
|'''12\7, 1200''' | |||
| | |'''29\17,''' '''1200''' | ||
|'''17\10,''' '''1200''' | |||
|'''22\13,''' '''1200''' | |||
|- | |||
| rowspan="2" | | |7# | ||
|7# | |||
|27\15, 1246.154 | |||
|20\11, 1263.158 | |||
| | |33\18, 1277.419 | ||
|13\7, 1300 | |||
|32\17, 1324.138 | |||
|19\10, 1341.176 | |||
| | |25\13, 1363.{{Overline|63}} | ||
|- | |||
|7x | |||
|7x | |||
| | |28\15, 1292.308 | ||
| rowspan="2" |21\11, 1326.318 | |||
|35\18, 1354.834 | |||
|14\7, 1400 | |||
|35\17, 1448.275 | |||
|21\10, 1482.353 | |||
|28\13, 1527.{{Overline|27}} | |||
|- | |- | ||
|8b, Fc | |||
| | |8f | ||
|29\15, 1338.462 | |||
| | |34\18, 1316.129 | ||
| 13\7, 1300 | |||
| | |31\17, 1282.759 | ||
| | |18\10, 1270.588 | ||
| | |23\13, 1254.{{Overline|54}} | ||
|- | |||
!8, F | |||
!8 | |||
| | !30\15, 1384.615 | ||
!22\11, 1389.473 | |||
! 36\18, 1393.548 | |||
!14\7, 1400 | |||
| | !34\17, 1406.897 | ||
!20\10, 1411.765 | |||
!26\13, 1418.{{Overline|18}} | |||
|- | |||
|36\17 | |8#, F# | ||
|8# | |||
1489 | |31\15, 1430.769 | ||
|23\11, 1452.632 | |||
|21\10 | |38\18, 1470.968 | ||
| rowspan="2" | 15\7, 1500 | |||
1482 | |37\17, 1531.034 | ||
|22\10, 1552.941 | |||
|27\13 | |29\13, 1581.{{Overline|81}} | ||
|- | |||
1472.{{Overline|72}} | |9b, Gc | ||
|9f | |||
|33\15, 1523.077 | |||
|24\11, 1515.789 | |||
|39\18, 1509.677 | |||
|36\17, 1489.655 | |||
| 21\10, 1482.759 | |||
|27\13, 1472.{{Overline|72}} | |||
|- | |- | ||
|'''9, G''' | |'''9, G''' | ||
| 9 | |9 | ||
|'''34\15''' | |'''34\15,''' '''1569.231''' | ||
|'''25\11,''' '''1578.947''' | |||
'''1569 | |'''41\18,''' '''1587.097''' | ||
|'''16\7,''' '''1600''' | |||
|'''25\11''' | |'''39\17,''' '''1613.793''' | ||
|'''23\10,''' '''1623.529''' | |||
'''1578 | |'''30\13,''' '''1636.{{Overline|36}}''' | ||
|- | |||
|'''41\18''' | | 9#, G# | ||
|9# | |||
'''1587 | |35\15, 1615.385 | ||
|26\11, 1642.105 | |||
|'''16\7''' | |43\18, 1664.516 | ||
| rowspan="2" |17\7, 1700 | |||
'''1600''' | |42\17, 1737.069 | ||
| 25\10, 1764.706 | |||
|'''39\17''' | |33\13, 1800 | ||
|- | |||
'''1613 | |Xb, Ac | ||
|Af | |||
|'''23\10''' | |37\15, 1707.692 | ||
|27\11, 1705.263 | |||
'''1623 | |44\18, 1703.226 | ||
| 41\17, 1696.552 | |||
|'''30\13''' | | 24\10, 1694.118 | ||
|31\13, 1690.{{Overline|90}} | |||
'''1636.{{Overline|36}}''' | |- | ||
| X, A | |||
|A | |||
|38\15, 1753.846 | |||
|28\11, 1768.421 | |||
| 46\18, 1780.645 | |||
|18\7, 1800 | |||
|44\17, 1820.690 | |||
| 26\10, 1835.294 | |||
| 34\13, 1854.{{Overline|54}} | |||
|- | |||
|X#, A# | |||
|A# | |||
|39\15, 1800 | |||
| rowspan="2" |29\11, 1831.579 | |||
|48\18, 1858.064 | |||
|19\7, 1900 | |||
|47\17, 1944.828 | |||
|28\10, 1976.471 | |||
|37\13, 2018.{{Overline|18}} | |||
|- | |||
| Ebb, Ccc | |||
|Ax | |||
|40\15, 1846.154 | |||
| 47\18, 1819.355 | |||
|18\7, 1800 | |||
|43\17, 1779.310 | |||
|25\10, 1764.706 | |||
|32\13, 1745.{{Overline|45}} | |||
|- | |- | ||
|'''Eb, Cc''' | |||
|'''Bf''' | |||
|'''41\15,''' '''1892.308''' | |||
| | |'''30\11,''' '''1894.737''' | ||
|'''49\18,''' '''1896.774''' | |||
|'''19\7, 1900''' | |||
| | |'''46\17,''' '''1903.448''' | ||
| | |'''27\10,''' '''1905.882''' | ||
|'''35\13,''' '''1909.{{Overline|09}}''' | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
|E, C | |||
|B | |||
|42\15, 1938.462 | |||
| | |31\11, 1957.895 | ||
| 51\18, 1974.194 | |||
|20\7, 2000 | |||
| | | 49\17, 2027.586 | ||
| | |29\10, 2047.059 | ||
| 38\13, 2072.{{Overline|72}} | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
|Ex, Cx | |||
| | |B# | ||
| 43\15, 1984.615 | |||
| | | rowspan="2" |32\11, 2021.053 | ||
|53\18, 2051.612 | |||
| | |21\7, 2100 | ||
| | |52\17, 2151.725 | ||
| | |31\10, 2188.235 | ||
| 41\13, 2236.{{Overline|36}} | |||
|- | |||
|0b, Dc | |||
| | |Cf | ||
|44\15, 2030.769 | |||
|52\18, 2012.903 | |||
| 20\7, 2000 | |||
| | | 48\17, 1986.207 | ||
|28\10, 1976.471 | |||
|36\13, 1963.{{Overline|63}} | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
!0, D | |||
!C | |||
!45\15, 2076.923 | |||
| | !33\11, 2084.211 | ||
!54\18, 2090.323 | |||
| | ! 21\7, 2100 | ||
| | !51\17, 2110.345 | ||
| | !30\10, 2117.647 | ||
!39\13, 2127.{{Overline|27}} | |||
|- | |||
|0#, D# | |||
| rowspan="2" | | |C# | ||
|46\15, 2123.077 | |||
|34\11, 2147.368 | |||
|56\15, 2167.742 | |||
|48\ | | rowspan="2" |22\7, 2200 | ||
|54\17, 2234.483 | |||
|32\10, 2258.824 | |||
|42\13, 2090.{{Overline|90}} | |||
| | |- | ||
|1b, 1c | |||
|Df | |||
|48\15, 2215.385 | |||
| | |35\11, 2210.526 | ||
|57\15, 2206.452 | |||
|53\17, 2193.103 | |||
|31\10, 2188.235 | |||
| | |40\13, 2181.{{Overline|81}} | ||
| | |||
|- | |- | ||
|'''1''' | |||
| | |'''D''' | ||
|'''49\15, 2261.538''' | |||
| | |'''36\11, 1073.684''' | ||
|'''59\18, 2283.871''' | |||
| | |'''23\7, 2300''' | ||
| | |'''56\17, 2317.241''' | ||
| | |'''33\10, 2329.412''' | ||
|'''43\13,''' '''2345.{{Overline|45}}''' | |||
|- | |||
|1# | |||
| | |D# | ||
|50\15, 2307.692 | |||
|37\11, 2336.842 | |||
|61\18, 2361.290 | |||
| | | rowspan="2" |24\7, 2400 | ||
|59\17, 2441.379 | |||
|35\10, 2470.588 | |||
|46\13, 2509.{{Overline|09}} | |||
| | |- | ||
|2b, 2c | |||
|Ef | |||
|52\15, 2400 | |||
| 25\ | |38\11, 2400 | ||
|62\18, 2400 | |||
|58\17, 2400 | |||
|34\10, 2400 | |||
| | |44\13, 2400 | ||
|- | |||
|2 | |||
|E | |||
|53\15, 2446.154 | |||
|39\11, 2463.158 | |||
|64\18, 2477,419 | |||
|25\7, 2500 | |||
|61\17, 2524.138 | |||
|36\10, 2541.176 | |||
|47\13, 2563.{{Overline|63}} | |||
|- | |- | ||
|2# | |||
| | |E# | ||
|54\15, 2492.308 | |||
| | | rowspan="2" |40\11, 2526.316 | ||
|66\18, 2554.838 | |||
| | |26\7, 2600 | ||
| | |64\17, 2648.275 | ||
| | |38\10, 2682.353 | ||
|50\13, 2727.{{Overline|27}} | |||
|- | |||
|3b, 3c | |||
| | |Fff | ||
|55\15, | |||
2538.462 | |||
|65\18, 2516.129 | |||
|''' | |25\7, 2500 | ||
|60\17, 2482.759 | |||
''' | |35\10, 2470.588 | ||
|45\13, 2454.{{Overline|54}} | |||
|''' | |- | ||
|'''3''' | |||
''' | |'''Ff''' | ||
|'''56\15, 2584.615''' | |||
|''' | |'''41\11, 2589.474''' | ||
|'''67\18, 2593.548''' | |||
''' | |'''26\7, 2600''' | ||
|'''63\17, 2606.897''' | |||
|''' | |'''37\10, 2611.765''' | ||
|'''48\13,''' '''2618.{{Overline|18}}''' | |||
''' | |- | ||
|3# | |||
|''' | |F | ||
|57\15, 2630.769 | |||
''' | |42\11, 2652.632 | ||
|69\18, 2670.968 | |||
|27\7, 2700 | |||
|66\17, 2731.034 | |||
|39\10, 2752.941 | |||
|51\13, 2781.{{Overline|81}} | |||
|- | |- | ||
|3x | |||
| | |F# | ||
| rowspan="2" |58\15, 2676.923 | |||
| | |43\11, 2715.789 | ||
|71\18, 2748.387 | |||
|28\7, 2800 | |||
|69\17, 2855.172 | |||
| | |41\10, 2894.118 | ||
|54\13, 2945.{{Overline|45}} | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
|4bb, 4cc | |||
| | |0ff, Gff | ||
|42\11, 2652.632 | |||
|68\18, 2632.258 | |||
|26\7, 2600 | |||
| | |62\17, 2565.517 | ||
| | |36\10, 2541.176 | ||
|46\13, 2509.{{Overline|09}} | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
|4b, 4c | |||
| | |0f, Gf | ||
|59\15, 2723.077 | |||
| | |43\11, 2715.789 | ||
|70\18, 2709.677 | |||
| | |27\7, 2700 | ||
|65\17, 2689.552 | |||
| | |38\10, 2682.353 | ||
|49\13, 2672.{{Overline|72}} | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
!4 | |||
! | !0, G | ||
!60\15, 2769.231 | |||
!44\11, 2778.947 | |||
!72\18, 2787.097 | |||
!0, | !28\7, 2800 | ||
!68\17, 2813.793 | |||
! | !40\10, 2823.529 | ||
!52\13, 2836.{{Overline|36}} | |||
|} | |||
{| class="wikitable" | |||
! | |+Cents<ref name=":04">Fractions repeating more than 4 digits written as continued fractions</ref> | ||
! colspan="2" |Notation | |||
!Supersoft | |||
!Soft | |||
! | !Semisoft | ||
! Basic | |||
!Semihard | |||
!Hard | |||
! | !Superhard | ||
! | |||
! | |||
! | |||
|- | |- | ||
!Guidotonic | |||
!Subdozenal | |||
!~15edf | |||
! ~11edf | |||
!~18edf | |||
!~7edf | |||
!~17edf | |||
!~10edf | |||
!~13edf | |||
|- | |- | ||
| | |F ut# | ||
| | |F# | ||
| | |1\15, 46.154 | ||
|1\11, 63.158 | |||
|2\18, 77.419 | |||
| rowspan="2" |1\7, 100 | |||
| | |3\17, 124.138 | ||
|2\10, 141.176 | |||
| | |3\13, 163.{{Overline|63}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |G reb | ||
| | | Gb | ||
| | |3\15, 138.462 | ||
|2\11. 126.316 | |||
| 3\18, 116.129 | |||
|2\17, 82.759 | |||
| | |1\10, 70.588 | ||
| 1\13, 54.{{Overline|54}} | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |'''G re''' | ||
|'''G''' | |||
| | |'''4\15,''' '''184.615''' | ||
| | |'''3\11,''' '''189.474''' | ||
|'''5\18,''' '''193.548''' | |||
|'''2\7,''' '''200''' | |||
| | |'''5\17,''' '''206.897''' | ||
|'''3\10,''' '''211.765''' | |||
| | |'''4\13,''' '''218.{{Overline|18}}''' | ||
| | |||
| | |||
| | |||
|- | |- | ||
| | | G re# | ||
| | |G# | ||
| | |5\15, 230.769 | ||
|4\11, 252.632 | |||
|7\18, 270.968 | |||
| rowspan="2" | 3\7, 300 | |||
| | |8\17, 331.034 | ||
|5\10, 352.941 | |||
| | |7\13, 381.{{Overline|81}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | | A mib | ||
| | |Hb | ||
| | |7\15, 323.077 | ||
|5\11, 315.789 | |||
|8\18, 309.677 | |||
| 7\17, 289.655 | |||
| | |4\10, 282.353 | ||
|5\13, 272.{{Overline|72}} | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |A mi | ||
| | |H | ||
| | |8\15, 369.231 | ||
| | | 6\11, 378.947 | ||
|10\18, 387.097 | |||
|4\7, 400 | |||
| | | 10\17, 413.793 | ||
| 6\10, 423.529 | |||
| | |8\13, 436.{{Overline|36}} | ||
| | |||
| | |||
| | |||
|- | |- | ||
| | |A mi# | ||
| | |H# | ||
| | |9\15, 415.385 | ||
| rowspan="2" | 7\11, 442.105 | |||
|12\18, 464.516 | |||
|5\7, 500 | |||
| | |13\17, 537.069 | ||
|8\10, 564.706 | |||
| | |11\13, 600 | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |B fa utb | ||
| | |Jbb | ||
| | |10\15, 461.538 | ||
| 11\18, 425.806 | |||
|4\7, 400 | |||
|9\17, 372.414 | |||
| | |5\10, 352.941 | ||
| 6\13, 327.{{Overline|27}} | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |'''B fa ut''' | ||
| | |'''Jb''' | ||
| | |'''11\15,''' '''507.692''' | ||
|'''8\11,''' '''505.263''' | |||
|'''13\18,''' '''503.226''' | |||
|'''5\7, 500''' | |||
| | |'''12\17,''' '''496.552''' | ||
|'''7\10,''' '''494.118''' | |||
| | |'''9\13,''' '''490.{{Overline|90}}''' | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |B fa ut# | ||
| | |J | ||
| | |12\15, 553.846 | ||
| | |9\11, 568.421 | ||
| | |15\18, 580.645 | ||
|6\7, 600 | |||
|15\17, 620.690 | |||
|9\10, 635.294 | |||
| | | 12\13, 654.{{Overline|54}} | ||
| | |||
| | |||
| | |||
|- | |- | ||
|B fa utx | |||
|J# | |||
|13\15, 600 | |||
| rowspan="2" |10\11, 631.579 | |||
|17\18, 658.064 | |||
|7\7, 700 | |||
|18\17, 744.828 | |||
|11\10, 776.471 | |||
|15\13, 818.{{Overline|18}} | |||
|- | |- | ||
|C sol reb | |||
|Kb | |||
|14\15, 646.154 | |||
|16\18, 619.355 | |||
|6\7, 600 | |||
|14\17, 579.310 | |||
|8\10, 564.706 | |||
| 10\13, 545.{{Overline|45}} | |||
|- | |- | ||
!C sol re | |||
!K | |||
!'''15\15,''' '''692.308''' | |||
!'''11\11,''' '''694.737''' | |||
!'''18\18,''' '''696.774''' | |||
!7\7, 700 | |||
!'''17\17,''' '''703.448''' | |||
!'''10\10,''' '''705.882''' | |||
!'''13\13,''' '''709.'''{{Overline|09}} | |||
|- | |- | ||
| | |C sol re# | ||
| | |K# | ||
| | |16\15, 738.462 | ||
|12\11, 757.895 | |||
| | |20\18, 774.194 | ||
| rowspan="2" |8\8, 800 | |||
| | |20\17, 827.586 | ||
|12\10, 847.059 | |||
|2\17 | |16\13, 872.{{Overline|72}} | ||
| | |||
| | |||
|- | |- | ||
| | |D la mib | ||
| | |Lb | ||
| | |18\15, 830.769 | ||
|13\11, 821.053 | |||
| | |21\18, 812.903 | ||
|19\17, 786.207 | |||
| | |11\10, 776.471 | ||
|14\13, 763.{{Overline|63}} | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |'''D la mi''' | ||
| | |'''L''' | ||
| | |'''19\15,''' '''876.923''' | ||
|'''14\11,''' '''884.211''' | |||
| | |'''23\18,''' '''890.323''' | ||
|'''9\5,''' '''900''' | |||
| | |'''22\17,''' '''910.345''' | ||
|'''13\10,''' '''917.647''' | |||
| | |'''17\13,''' '''927.{{Overline|27}}''' | ||
| | |||
| | |||
| | |||
|- | |- | ||
| | |D la mi# | ||
| | |L# | ||
| | |20\15, 923.077 | ||
|15\11, 947.368 | |||
| | |25\18, 967.742 | ||
| rowspan="2" |10\7, 1000 | |||
| | |25\17, 1034.483 | ||
|15\10, 1058.824 | |||
|7\17 | |20\13, 1090.{{Overline|90}} | ||
| | |||
| | |||
|- | |- | ||
| | |E fa utb | ||
| | |Mb | ||
| | |22\15, 1015.385 | ||
|16\11, 1010.526 | |||
| | |26\18, 1006.452 | ||
|24\17, 993.103 | |||
| | |14\10, 988.235 | ||
|18\13, 981.{{Overline|81}} | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |E fa ut | ||
| | |M | ||
| | |23\15, 1061.538 | ||
|17\11, 1073.684 | |||
| | |28\18, 1083.871 | ||
|11\7, 1100 | |||
| | |27\17, 1117.241 | ||
|16\10, 1129.412 | |||
| | |21\9, 1145.{{Overline|45}} | ||
| | |||
| | |||
| | |||
|- | |- | ||
| | |E fa ut# | ||
| | |M# | ||
| | |24\15, 1107.923 | ||
| rowspan="2" |18\11, 1136.842 | |||
| | |30\18, 1161.29 | ||
|12\7, 1200 | |||
| | |30\17, 1241.379 | ||
|18\10, 1270.588 | |||
| 24\13, 1309.{{Overline|09}} | |||
| | |- | ||
|F sol re utb | |||
| | | Nbb | ||
|25\15, 1153.846 | |||
| | |29\18, 1122.581 | ||
| 11\7, 1100 | |||
|26\17, 1075.862 | |||
|15\10, 1058.824 | |||
|19\13, 1036.{{Overline|36}} | |||
|- | |- | ||
|''' | |'''F sol re ut''' | ||
|''' | |'''Nb''' | ||
|''' | |'''26\15,''' '''1200''' | ||
''' | |'''19\11,''' '''1200''' | ||
|''' | |'''31\18,''' '''1200''' | ||
''' | |'''12\7, 1200''' | ||
|''' | |'''29\17,''' '''1200''' | ||
''' | |'''17\10,''' '''1200''' | ||
|''' | |'''22\13,''' '''1200''' | ||
|''' | |||
''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|- | |- | ||
| | |F sol re ut# | ||
| | |N | ||
| | |27\15, 1246.154 | ||
|20\11, 1263.158 | |||
| | |33\18, 1277.419 | ||
|13\7, 1300 | |||
| | |32\17, 1324.138 | ||
|19\10, 1341.176 | |||
| | |25\13, 1363.{{Overline|63}} | ||
| | |||
| | |||
| | |||
|- | |- | ||
| | | F sol re utx | ||
| | |N# | ||
| | |28\15, 1292.308 | ||
| rowspan="2" |21\11, 1326.318 | |||
|35\18, 1354.834 | |||
| rowspan="2" | | |14\7, 1400 | ||
|35\17, 1448.275 | |||
|21\10, 1482.353 | |||
| | |28\13, 1527.{{Overline|27}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |G la mi reb | ||
| | | Pb | ||
| | |29\15, 1338.462 | ||
|34\18, 1316.129 | |||
|13\7, 1300 | |||
| | |31\17, 1282.759 | ||
|18\10, 1270.588 | |||
|23\13, 1254.{{Overline|54}} | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
! | !G la mi re | ||
! | !P | ||
! | !30\15, 1384.615 | ||
!22\11, 1389.473 | |||
!36\18, 1393.548 | |||
! | !14\7, 1400 | ||
!34\17, 1406.897 | |||
!20\10, 1411.765 | |||
! | !26\13, 1418.{{Overline|18}} | ||
! | |||
! | |||
! | |||
! | |||
|- | |- | ||
| | |G la mi re# | ||
| | |P# | ||
| | |31\15, 1430.769 | ||
| rowspan="2" |23\11, 1452.632 | |||
|38\18, 1470.968 | |||
| | |15\7, 1500 | ||
|37\17, 1531.034 | |||
| 22\10, 1552.941 | |||
| | |29\13, 1581.{{Overline|81}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |A fab | ||
| | |Qbb | ||
| | |32\15, 1476.923 | ||
|37\18, 1432.258 | |||
|14\7, 1400 | |||
| | |33\17, 1365.517 | ||
|19\10, 1341.175 | |||
| 24\13, 1309.{{Overline|09}} | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |A fa | ||
| | | Qb | ||
| | |33\15, 1523.077 | ||
|24\11, 1515.789 | |||
|39\18, 1509.677 | |||
| | |15\7, 1500 | ||
|36\17, 1489.655 | |||
|21\10, 1482.759 | |||
| | |27\13, 1472.{{Overline|72}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |'''A mi''' | ||
| | |'''Q''' | ||
| | |'''34\15,''' '''1569.231''' | ||
|'''25\11,''' '''1578.947''' | |||
|'''41\18,''' '''1587.097''' | |||
| | |'''16\7,''' '''1600''' | ||
|'''39\17,''' '''1613.793''' | |||
|'''23\10,''' '''1623.529''' | |||
| | |'''30\13,''' '''1636.{{Overline|36}}''' | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |A mi# | ||
| | |Q# | ||
| | |35\15, 1615.385 | ||
|26\11, 1642.105 | |||
|43\18, 1664.516 | |||
| | | rowspan="2" |17\7, 1700 | ||
|42\17, 1737.069 | |||
|25\10, 1764.706 | |||
| | |33\13, 1800 | ||
| | |||
| | |||
| | |||
|- | |- | ||
| | |B sol fa utb | ||
| | |Rb | ||
| | |37\15, 1707.692 | ||
|27\11, 1705.263 | |||
|44\18, 1703.226 | |||
| | |41\17, 1696.552 | ||
|24\10, 1694.118 | |||
|31\13, 1690.{{Overline|90}} | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | | B sol fa ut | ||
| | |R | ||
| | |38\15, 1753.846 | ||
|28\11, 1768.421 | |||
|46\18, 1780.645 | |||
| | |18\7, 1800 | ||
|44\17, 1820.690 | |||
|26\10, 1835.294 | |||
| | |34\13, 1854.{{Overline|54}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |B sol fa ut# | ||
| | |R# | ||
| | |39\15, 1800 | ||
| rowspan="2" |29\11, 1831.579 | |||
|48\18, 1858.064 | |||
| | | 19\7, 1900 | ||
|47\17, 1944.828 | |||
|28\10, 1976.471 | |||
| | |37\13, 2018.{{Overline|18}} | ||
|- | |||
|C la sol reb | |||
| | |Sbb | ||
|40\15, 1846.154 | |||
|47\18, 1819.355 | |||
| | |18\7, 1800 | ||
|43\17, 1779.310 | |||
| | |25\10, 1764.706 | ||
|32\13, 1745.{{Overline|45}} | |||
|- | |- | ||
|''' | |'''C la sol re''' | ||
|''' | |'''Sb''' | ||
|''' | |'''41\15,''' '''1892.308''' | ||
|'''30\11,''' '''1894.737''' | |||
''' | |'''49\18,''' '''1896.774''' | ||
|''' | |'''19\7, 1900''' | ||
|'''46\17,''' '''1903.448''' | |||
''' | |'''27\10,''' '''1905.882''' | ||
|''' | |'''35\13,''' '''1909.{{Overline|09}}''' | ||
''' | |||
|''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|- | |- | ||
| | |C la sol re# | ||
| | |S# | ||
| | |42\15, 1938.462 | ||
|31\11, 1957.895 | |||
|51\18, 1974.194 | |||
| | |20\7, 2000 | ||
|49\17, 2027.586 | |||
|29\10, 2047.059 | |||
| | |38\13, 2072.{{Overline|72}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | | C la sol rex | ||
| | | Sx | ||
| | |43\15, 1984.615 | ||
| rowspan="2" |32\11, 2021.053 | |||
|53\18, 2051.612 | |||
| rowspan="2" | | |21\7, 2100 | ||
|52\17, 2151.725 | |||
|31\10, 2188.235 | |||
| | |41\13, 2236.{{Overline|36}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | | D la mib | ||
| | |Tb | ||
| | |44\15, 2030.769 | ||
|52\18, 2012.903 | |||
|20\7, 2000 | |||
| | |48\17, 1986.207 | ||
|28\10, 1976.471 | |||
|36\13, 1963.{{Overline|63}} | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
! | !D la mi | ||
! | !T | ||
! | !45\15, 2076.923 | ||
!33\11, 2084.211 | |||
!54\18, 2090.323 | |||
! | !21\7, 2100 | ||
!51\17, 2110.345 | |||
!30\10, 2117.647 | |||
! | !39\13, 2127.{{Overline|27}} | ||
! | |||
! | |||
! | |||
! | |||
|- | |- | ||
| | |D la mib | ||
| | |T# | ||
| | |46\15, 2123.077 | ||
|34\11, 2147.368 | |||
|56\15, 2167.742 | |||
| | | rowspan="2" |22\7, 2200 | ||
| 54\17, 2234.483 | |||
| 32\10, 2258.824 | |||
| | |42\13, 2090.{{Overline|90}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |E fa utb | ||
| | |Ub | ||
| | |48\15, 2215.385 | ||
|35\11, 2210.526 | |||
| | |57\15, 2206.452 | ||
|53\17, 2193.103 | |||
| | |31\10, 2188.235 | ||
|40\13, 2181.{{Overline|81}} | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |'''E fa ut''' | ||
| | |'''U''' | ||
| | |'''49\15, 2261.538''' | ||
| '''36\11, 1073.684''' | |||
|'''59\18, 2283.871''' | |||
| | |'''23\7, 2300''' | ||
| '''56\17, 2317.241''' | |||
|'''33\10, 2329.412''' | |||
| | |'''43\13,''' '''2345.{{Overline|45}}''' | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |E fa ut# | ||
| | |U | ||
| | |50\15, 2307.692 | ||
| 37\11, 2336.842 | |||
|61\18, 2361.290 | |||
| | | rowspan="2" |24\7, 2400 | ||
|59\17, 2441.379 | |||
|35\10, 2470.588 | |||
| | | 46\13, 2509.{{Overline|09}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |F sol re utb | ||
| | |Vb | ||
| | |52\15, 2400 | ||
| 38\11, 2400 | |||
|62\18, 2400 | |||
| | |58\17, 2400 | ||
|34\10, 2400 | |||
|44\13, 2400 | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |F sol re ut | ||
| | |V | ||
| | |53\15, 2446.154 | ||
|39\11, 2463.158 | |||
|64\18, 2477,419 | |||
| | |25\7, 2500 | ||
|61\17, 2524.138 | |||
|36\10, 2541.176 | |||
| | |47\13, 2563.{{Overline|63}} | ||
| | |||
| | |||
| | |||
|- | |- | ||
| | |F sol re ut# | ||
| | | V# | ||
| | |54\15, 2492.308 | ||
| rowspan="2" |40\11, 2526.316 | |||
|66\18, 2554.838 | |||
| | |26\7, 2600 | ||
|64\17, 2648.275 | |||
|38\10, 2682.353 | |||
| | |50\13, 2727.{{Overline|27}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |G la mi reb | ||
| | | Wbb | ||
| | |55\15, | ||
2538.462 | |||
|65\18, 2516.129 | |||
|25\7, 2500 | |||
|60\17, 2482.759 | |||
|35\10, 2470.588 | |||
| | | 45\13, 2454.{{Overline|54}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |'''G la mi re''' | ||
| | |'''Wb''' | ||
| | | '''56\15, 2584.615''' | ||
|'''41\11, 2589.474''' | |||
|'''67\18, 2593.548''' | |||
| | |'''26\7, 2600''' | ||
|'''63\17, 2606.897''' | |||
|'''37\10, 2611.765''' | |||
|18 | |'''48\13,''' '''2618.{{Overline|18}}''' | ||
|- | |||
| G la mi re# | |||
| | |W | ||
|57\15, 2630.769 | |||
|42\11, 2652.632 | |||
| | |69\18, 2670.968 | ||
| 27\7, 2700 | |||
| 66\17, 2731.034 | |||
| | |39\10, 2752.941 | ||
|51\13, 2781.{{Overline|81}} | |||
|- | |- | ||
| | |G la mi rex | ||
| | |W# | ||
| | | rowspan="2" |58\15, 2676.923 | ||
|43\11, 2715.789 | |||
|71\18, 2748.387 | |||
| | |28\7, 2800 | ||
|69\17, 2855.172 | |||
|41\10, 2894.118 | |||
| | |54\13, 2945.{{Overline|45}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |A fab | ||
| | |Xbb | ||
| 42 | |42\11, 2652.632 | ||
|68\18, 2632.258 | |||
|26\7, 2600 | |||
| 62\17, 2565.517 | |||
|36\10, 2541.176 | |||
|46\13, 2509.{{Overline|09}} | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |A fa | ||
| | |Xb | ||
| | |59\15, 2723.077 | ||
|43\11, 2715.789 | |||
| 70\18, 2709.677 | |||
| | |27\7, 2700 | ||
| 65\17, 2689.552 | |||
|38\10, 2682.353 | |||
| | | 49\13, 2672.{{Overline|72}} | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
!A mi | |||
!X | |||
!60\15, 2769.231 | |||
!44\11, 2778.947 | |||
!72\18, 2787.097 | |||
!28\7, 2800 | |||
!68\17, 2813.793 | |||
!40\10, 2823.529 | |||
!52\13, 2836.{{Overline|36}} | |||
|- | |- | ||
|A mi# | |||
|X# | |||
|61\15 | |||
2815; 2.6 | |||
|45\11 | |||
2842; 9.5 | |||
|74\18 | |||
2864; 1.9375 | |||
| rowspan="2" |29\7 | |||
2900 | |||
|71\17 | |||
2937; 1, 13.5 | |||
|42\10 | |||
2964; 1, 2.4 | |||
|55\13 | |||
3000 | |||
|- | |- | ||
| | |B sol fab | ||
| | | Yb | ||
| | |63\15 | ||
2907; 1, 2, 4 | |||
| | |46\11 | ||
2905; 3.8 | |||
| | |75\18 | ||
2903; 4, 2, 3 | |||
| | | 70\17 | ||
2896; 1.8125 | |||
|41\10 | |||
2894; 8.5 | |||
| | |53\13 | ||
2890.{{Overline|90}} | |||
| | |||
|- | |- | ||
| | |'''B sol fa''' | ||
| | |'''Y''' | ||
| | |'''64\15''' | ||
'''2953; 1, 5.5''' | |||
| | |'''47\11''' | ||
'''2968; 2.375''' | |||
| | |'''77\18''' | ||
'''2980; 1.55''' | |||
| | |'''30\7''' | ||
'''3000''' | |||
| | |'''73\17''' | ||
'''3020; 1.45''' | |||
|'''43\10''' | |||
| | '''3035; 3.4''' | ||
|'''56\13''' | |||
'''3054.{{Overline|54}}''' | |||
|- | |- | ||
| | |B sol fa# | ||
| | |Y# | ||
| | |65\15 | ||
3000 | |||
| | | 48\11 | ||
3031; 1, 1.375 | |||
| | | 79\18 | ||
3058; 15.5 | |||
| | | rowspan="2" |31\7 | ||
3100 | |||
| | |76\17 | ||
3144; 1, 4.8 | |||
| | |45\10 | ||
3176: 2, 8 | |||
| | | 59\13 | ||
3218.{{Overline|18}} | |||
|- | |- | ||
| | |C la solb | ||
| | | Zb | ||
| | |67\15 | ||
3092; 3, 4 | |||
| | |49\11 | ||
3094; 1, 2.8 | |||
| | |80\18 | ||
3096; 1, 3, 2, 3 | |||
| | | 75\17 | ||
3103; 2, 2, 6 | |||
|44\10 | |||
3105; 1, 7.5 | |||
| | |57\13 | ||
3109.{{Overline|09}} | |||
| | |||
|- | |- | ||
| | | C la sol | ||
| | |Z | ||
| | | 68\15 | ||
3138; 2, 6 | |||
| | |50\11 | ||
3157; 1, 8.5 | |||
| | |82\18 | ||
3174; 5, 6 | |||
| | |32\7 | ||
3200 | |||
| | |78\17 | ||
3227; 1, 1, 2.4 | |||
| | |46\10 | ||
3247; 17 | |||
|60\13 | |||
3272.{{Overline|72}} | |||
|- | |- | ||
| | |C la sol# | ||
| | |Z# | ||
| | |69\15 | ||
3184; 1.625 | |||
| | | rowspan="2" |51\11 | ||
3221: 19 | |||
| | |84\18 | ||
3251; 1, 1, 1, 1.4 | |||
| | |33\7 | ||
3300 | |||
| | | 81\17 | ||
3351; 1, 2.625 | |||
| | |48\10 | ||
3388; 4, 4 | |||
| | |63\13 | ||
3436.{{Overline|36}} | |||
|- | |- | ||
| | |D labb | ||
| | |Ab | ||
| | |70\15 | ||
3230; 1.3 | |||
|83\18 | |||
3212; 1, 9, 3 | |||
| | |32\7 | ||
3200 | |||
| | |77\17 | ||
3186; 4, 3 | |||
| | | 45\10 | ||
3176: 2, 8 | |||
| | | 58\13 | ||
3163.{{Overline|63}} | |||
| | |||
|- | |- | ||
|'''D lab''' | |||
|'''A''' | |||
|'''71\15''' | |||
'''3276; 1, 12''' | |||
|'''52\11''' | |||
'''3284; 4.75''' | |||
|'''85\18''' | |||
'''3290; 3.1''' | |||
|'''33\7''' | |||
'''3300''' | |||
|'''80\17''' | |||
'''3310; 2.9''' | |||
|'''47\10''' | |||
'''3317; 1, 1, 1.2''' | |||
|'''61\13''' | |||
|''' | '''3327.{{Overline|27}}''' | ||
|''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|- | |- | ||
| | |D la | ||
| | |A# | ||
| | |72\15 | ||
3323; 13 | |||
| | |53\11 | ||
3347; 2, 1.4 | |||
| | |87\18 | ||
3367; 1, 2.875 | |||
| | |34\7 | ||
3400 | |||
| | |83\17 | ||
3434; 2, 14 | |||
|49\10 | |||
3458; 1, 4, 1.5 | |||
|64\13 | |||
3490.{{Overline|90}} | |||
| | |||
| | |||
|- | |- | ||
| | |D la# | ||
| | |Ax | ||
| | |73\15 | ||
3369; 4, 3 | |||
| | | rowspan="2" |54\15 | ||
3410; 1.9 | |||
| | |89\18 | ||
3445; 6.2 | |||
| | |35\7 | ||
3500 | |||
| | |86\17 | ||
3558; 1, 1, 1, 1.75 | |||
| | |51\10 | ||
3600 | |||
|67\13 | |||
3654.{{Overline|54}} | |||
|- | |- | ||
| | |F utb | ||
| | |Bb | ||
| | | 74\15 | ||
3415; 2.6 | |||
|88\18 | |||
3406; 2, 4, 1.5 | |||
| | |34\7 | ||
3400 | |||
| | |82\17 | ||
3393; 9, 1.5 | |||
| | |48\10 | ||
3388; 4, 4 | |||
| | |62\13 | ||
3381.{{Overline|81}} | |||
| | |||
|- | |- | ||
! | !F ut | ||
! | ! B | ||
! | !75\15 | ||
3461; 1, 1, 6 | |||
! | !55\11 | ||
3473; 1, 2, 6 | |||
! | ! 90\18 | ||
3483; 1, 6.75 | |||
! | !35\7 | ||
3500 | |||
! | !85\17 | ||
3517; 4, 7 | |||
! | !50\10 | ||
3529; 2, 2, 3 | |||
! | !65\13 | ||
3545.{{Overline|45}} | |||
|- | |- | ||
| | |F ut# | ||
| | |B# | ||
| | | 76\15 | ||
3507; 1, 2, 4 | |||
| | |56\15 | ||
3536; 1, 5, 3 | |||
| | |92\18 | ||
3561: 3, 2, 4 | |||
| rowspan="2" | | | rowspan="2" |36\7 | ||
3600 | |||
| | |88\17 | ||
3641; 2, 1, 1.75 | |||
| | |52\10 | ||
3670; 1.7 | |||
| | |68\13 | ||
3709.{{Overline|09}} | |||
|- | |- | ||
| | |G reb | ||
| | |Cb | ||
| | | 78\15 | ||
3600 | |||
| | |57\15 | ||
3600 | |||
| | |93\18 | ||
3600 | |||
| | |87\17 | ||
3600 | |||
| | |51\10 | ||
3600 | |||
| | |66\13 | ||
3600 | |||
|- | |- | ||
|''' | |'''G re''' | ||
|''' | |'''C''' | ||
|''' | |'''79\15''' | ||
''' | '''3646; 6.5''' | ||
|''' | |'''58\11''' | ||
''' | '''3663; 6, 3''' | ||
|''' | |'''95\18''' | ||
''' | '''3677; 2, 2.6''' | ||
|''' | |'''37\7''' | ||
''' | '''3700''' | ||
|''' | |'''90\17''' | ||
''' | '''3724; 7, 4''' | ||
|''' | |'''53\17''' | ||
''' | '''3741; 5, 1.5''' | ||
|''' | |'''69\13''' | ||
''' | '''3763.{{Overline|63}}''' | ||
|- | |- | ||
| | |G re# | ||
| | |C# | ||
| | |80\15 | ||
3692; 4, 3 | |||
| | |59\11 | ||
3726; 3, 6 | |||
| | |97\18 | ||
3755; 5.2 | |||
| rowspan="2" | | | rowspan="2" |38\7 | ||
3800 | |||
| | |93\17 | ||
3848; 3.625 | |||
| | |55\17 | ||
3882; 2, 1.2 | |||
| | |72\13 | ||
3927.{{Overline|27}} | |||
|- | |- | ||
| | |A mib | ||
| | | Db | ||
| | |82\15 | ||
3784; 1.625 | |||
| | |60\11 | ||
3789; 2,9 | |||
| | |98\18 | ||
3793; 1, 1, 4, 1.5 | |||
| | |92\17 | ||
3806; 1, 8, 1.5 | |||
| | | 54\17 | ||
3811; 1, 3, 4 | |||
| | |70\13 | ||
3818.{{Overline|18}} | |||
|- | |- | ||
| | |A mi | ||
| | |D | ||
| | |83\15 | ||
3830, 1.3 | |||
| | |61\11 | ||
3852; 1, 1, 1.4 | |||
| | |100\18 | ||
3870; 1, 30 | |||
| | |39\7 | ||
3900 | |||
| | |95\17 | ||
3931; 29 | |||
| | |56\17 | ||
3952; 1, 16 | |||
| | | 73\13 | ||
3981.{{Overline|81}} | |||
|- | |- | ||
| | |A mi# | ||
| | |D# | ||
| | |84\15 | ||
3876; 1, 12 | |||
| rowspan="2" | | | rowspan="2" |62\11 | ||
3915; 1, 3.75 | |||
| | |102\18 | ||
3948; 2, 1, 1.4 | |||
| | |40\7 | ||
4000 | |||
| | |98\17 | ||
4055; 5.8 | |||
| | |58\10 | ||
4094; 8.5 | |||
| | |76\13 | ||
4145.{{Overline|45}} | |||
|- | |- | ||
| | |B fa utb | ||
| | |Ebb | ||
| | |85\15 | ||
3923; 13 | |||
| | |101\18 | ||
3909; 1, 2.1 | |||
| | |39\7 | ||
3900 | |||
| | |94\17 | ||
3889; 1, 1.9 | |||
| | |55\10 | ||
3882; 2, 1.2 | |||
| | |71\13 | ||
3872.{{Overline|72}} | |||
|- | |- | ||
|''' | |'''B fa ut''' | ||
|''' | |'''Eb''' | ||
|''' | |'''86\15''' | ||
''' | '''3969; 4, 3''' | ||
|''' | |'''63\11''' | ||
''' | '''3978; 1, 3.75''' | ||
|''' | |'''103\18''' | ||
''' | '''3987; 10, 3''' | ||
|''' | |'''40\7''' | ||
''' | '''4000''' | ||
|''' | |'''97\17''' | ||
''' | '''4013; 1, 3, 1.2''' | ||
|''' | |'''57\10''' | ||
''' | '''4023; 1, 1, 8''' | ||
|''' | |'''74\13''' | ||
''' | '''4036.{{Overline|36}}''' | ||
|- | |- | ||
| | |B fa ut# | ||
| | | E | ||
| | |87\15 | ||
4015; 2.6 | |||
| | |64\11 | ||
4042; 9.5 | |||
| | |105\18 | ||
4064; 1.9375 | |||
| | |41\7 | ||
4100 | |||
| | | 100\17 | ||
4137; 1, 13.5 | |||
| | |59\10 | ||
4164; 1, 2.4 | |||
| | |77\13 | ||
4200 | |||
|- | |- | ||
| | | B fa utx | ||
| | |E# | ||
| | |88\15 | ||
4061; 1, 1, 6 | |||
| rowspan="2" | | | rowspan="2" |65\11 | ||
4105; 3.8 | |||
| | |107\18 | ||
4141; 1, 14.5 | |||
| | |42\7 | ||
4200 | |||
| | |103\17 | ||
4262; 14.5 | |||
| | |61\10 | ||
4305; 1, 7.5 | |||
| | |80\13 | ||
4363.{{Overline|63}} | |||
|- | |- | ||
| | | C sol reb | ||
| | |Fb | ||
| | |89\15 | ||
4107; 1.3 | |||
| | |106\18 | ||
4103; 4, 2, 3 | |||
| | | 41\7 | ||
4100 | |||
| | |99\17 | ||
4096; 1.8125 | |||
| | |58\10 | ||
4094; 8.5 | |||
| | |75\13 | ||
4090.{{Overline|90}} | |||
|- | |- | ||
! | !C sol re | ||
! | !F | ||
! | !90\15 | ||
4153; 1, 5.5 | |||
! | !66\11 | ||
4168; 2.375 | |||
! | !108\18 | ||
4180; 1.55 | |||
! | !42\7 | ||
4200 | |||
! | !102\17 | ||
4220; 1.45 | |||
! | !60\10 | ||
4235; 3.4 | |||
! | !78\13 | ||
4254.{{Overline|54}} | |||
|} | |||
==Intervals== | |||
{| class="wikitable" | |||
!Generators | |||
!Sesquitave notation | |||
!Interval category name | |||
!Generators | |||
!Notation of 3/2 inverse | |||
!Interval category name | |||
|- | |||
| colspan="6" |The 4-note MOS has the following intervals (from some root): | |||
|- | |- | ||
| | |0 | ||
| | |Do, Sol | ||
| | |perfect unison | ||
|0 | |||
| | |Do, Sol | ||
|sesquitave (just fifth) | |||
| | |- | ||
|1 | |||
| | |Fa, Do | ||
|perfect fourth | |||
| | | -1 | ||
|Re, La | |||
| | |perfect second | ||
| | |||
|- | |- | ||
| | |2 | ||
| | |Mib, Sib | ||
| | |minor third | ||
| -2 | |||
| | |Mi, Si | ||
|major third | |||
| | |- | ||
|3 | |||
| | |Reb, Lab | ||
|diminished second | |||
| | | -3 | ||
|Fa#, Do# | |||
| | |augmented fourth | ||
|- | |||
| colspan="6" |The chromatic 7-note MOS also has the following intervals (from some root): | |||
|- | |- | ||
| | |4 | ||
| | |Dob, Solb | ||
| | |diminished sesquitave | ||
| -4 | |||
| | |Do#, Sol# | ||
|augmented unison (chroma) | |||
| | |- | ||
|5 | |||
| | |Fab, Dob | ||
| diminished fourth | |||
| | | -5 | ||
|Re#, La# | |||
| | |augmented second | ||
| | |||
|- | |- | ||
| | |6 | ||
| | |Mibb, Sibb | ||
| | |diminished third | ||
| -6 | |||
| | |Mi#, Si# | ||
|augmented third | |||
|} | |||
| | ==Genchain== | ||
| | The generator chain for this scale is as follows: | ||
{| class="wikitable" | |||
| | |Mibb | ||
Sibb | |||
|Fab | |||
Dob | |||
| | |Dob | ||
Solb | |||
| | |Reb | ||
| | Lab | ||
|Mib | |||
Sib | |||
| | |Fa | ||
Do | |||
|Do | |||
Sol | |||
| | |Re | ||
La | |||
| | |Mi | ||
Si | |||
|Fa# | |||
| | |||
Do# | |||
|Do# | |||
| | Sol# | ||
|Re# | |||
La# | |||
|Mi# | |||
Si# | |||
|- | |- | ||
| | |d3 | ||
| | |d4 | ||
| | |d5 | ||
|d2 | |||
|m3 | |||
|P4 | |||
| | |P1 | ||
|P2 | |||
| | |M3 | ||
|A4 | |||
| | |A1 | ||
|A2 | |||
| | |A3 | ||
|} | |||
| | |||
==Modes== | |||
| | |||
| | The mode names are based on the species of fifth: | ||
| | {| class="wikitable" | ||
| | !Mode | ||
!Scale | |||
![[Modal UDP Notation|UDP]] | |||
! colspan="3" |Interval type | |||
| | |||
| | |||
|- | |- | ||
!name | |||
!pattern | |||
!notation | |||
!2nd | |||
!3rd | |||
!4th | |||
| | |- | ||
|Lydian | |||
| | |LLLs | ||
|<nowiki>3|0</nowiki> | |||
| | |P | ||
|M | |||
| | |A | ||
| | |||
|- | |- | ||
| | |Major | ||
| | |LLsL | ||
| | |<nowiki>2|1</nowiki> | ||
|P | |||
|M | |||
|P | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |Minor | ||
| | |LLsL | ||
| | |<nowiki>1|2</nowiki> | ||
|P | |||
| | |m | ||
|P | |||
| | |||
| | |||
|- | |- | ||
| | |Phrygian | ||
| | |sLLL | ||
| | |<nowiki>0|3</nowiki> | ||
|d | |||
| | |m | ||
|P | |||
| | |} | ||
==Temperaments== | |||
The most basic rank-2 temperament interpretation of angel is '''Napoli'''. The name "Napoli" comes from the “Neapolitan” sixth triad spelled <code>root-(p-2g)-(2p-3g)</code> (p = 3/2, g = the whole tone) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations. | |||
==='''Napoli-Meantone'''=== | |||
[[Subgroup]]: 3/2.6/5.8/5 | |||
|- | |||
[[Comma]] list: [[81/80]] | |||
[[POL2]] generator: ~9/8 = 192.6406¢ | |||
[[Mapping]]: [{{val|1 1 2}}, {{val|0 -2 -3}}] | |||
[[Optimal ET sequence]]: ~(7edf, 11edf, 18edf) | |||
==='''Napoli-Archy'''=== | |||
[[Subgroup]]: 3/2.7/6.14/9 | |||
[[Comma]] list: [[64/63]] | |||
[[POL2]] generator: ~8/7 = 218.6371¢ | |||
[[Mapping]]: [{{val|1 1 2}}, {{val|0 -2 -3}}] | |||
|} | |||
== | [[Optimal ET sequence]]: ~(7edf, 10edf, 13edf, 16edf) | ||
===Scale tree=== | |||
The spectrum looks like this: | |||
{| class="wikitable" | {| class="wikitable" | ||
! | ! colspan="3" |Generator | ||
! | |||
! | (bright) | ||
! | !Cents | ||
! | !L | ||
! | !s | ||
!L/s | |||
!Comments | |||
|- | |- | ||
| | |1\4 | ||
| | |||
| | |||
|171.429 | |||
|1 | |||
|1 | |||
|1.000 | |||
|Equalised | |||
|- | |- | ||
| | |6\23 | ||
| | | | ||
| | | | ||
| | |180.000 | ||
| | |6 | ||
| | |5 | ||
|1.200 | |||
| | |||
|- | |- | ||
| | |5\19 | ||
| | | | ||
| | | | ||
| | |181.{{Overline|81}} | ||
| | |5 | ||
| | |4 | ||
|1.250 | |||
| | |||
|- | |- | ||
| | | | ||
| | |14\53 | ||
| | | | ||
| | |182.609 | ||
| | |14 | ||
| | |11 | ||
|1.273 | |||
| | |||
|- | |- | ||
| | | | ||
| | |9\34 | ||
| | | | ||
| | | 183.051 | ||
| | |9 | ||
| | |7 | ||
| | | 1.286 | ||
| | | | ||
|- | |- | ||
|4\15 | |||
| | |||
| | |||
|184.615 | |||
|4 | |4 | ||
| | |3 | ||
| | |1.333 | ||
| - | | | ||
| | |- | ||
| | | | ||
|11\41 | |||
| | |||
|185.915 | |||
|11 | |||
|8 | |||
|1.375 | |||
| | |||
|- | |- | ||
| | |||
|7\26 | |||
| | |||
|186.{{Overline|6}} | |||
|7 | |||
|5 | |5 | ||
| | |1.400 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |10\37 | ||
| | | | ||
| | |187.5 | ||
| | |10 | ||
| | | 7 | ||
| | | 1.429 | ||
| | |||
|- | |||
| | |||
|13\48 | |||
| | |||
| | | 187.952 | ||
|13 | |||
|9 | |||
| | |1.444 | ||
| | |||
|- | |||
| | | | ||
|16\59 | |||
| | |||
| | |188.253 | ||
|16 | |||
|11 | |||
| | |1.455 | ||
| | |||
|- | |||
| | |3\11 | ||
| | |||
| | |||
| | |189.474 | ||
|3 | |||
|2 | |||
| | |1.500 | ||
| Napoli-Meantone starts here | |||
|- | |||
| | | | ||
|14\51 | |||
| | |||
| | |190.{{Overline|90}} | ||
|14 | |||
|9 | |||
| | |1.556 | ||
| | |||
|- | |||
| | | | ||
|11\40 | |||
| | |||
| | |191.304 | ||
|11 | |||
|7 | |||
| 1.571 | |||
| | |||
|- | |- | ||
| | | | ||
| | |8\29 | ||
| | | | ||
| | |192.000 | ||
| | |8 | ||
| | |5 | ||
| | |1.600 | ||
| | | | ||
|- | |- | ||
| | |||
|5\18 | |||
| | |||
|193.548 | |||
|5 | |||
|3 | |||
|1.667 | |||
| | |||
|- | |- | ||
| | | | ||
| | | | ||
| | |12\43 | ||
| | |194.{{Overline|594}} | ||
| | |12 | ||
| | |7 | ||
|1.714 | |||
| | |||
|- | |- | ||
| | | | ||
| | |7\25 | ||
| | | | ||
| | |195.348 | ||
| | |7 | ||
| | |4 | ||
|1.750 | |||
| | |||
|- | |||
| | |||
|9\32 | |||
| | |||
|196.{{Overline|36}} | |||
|9 | |||
|5 | |||
|1.800 | |||
| | |||
|- | |- | ||
| | | | ||
| | |11\39 | ||
| | | | ||
| | |197.015 | ||
| | |11 | ||
| | |6 | ||
|1.833 | |||
| | |||
|- | |- | ||
| | | | ||
| | |13\46 | ||
| | | | ||
| | |197.468 | ||
| | |13 | ||
| | |7 | ||
| | |1.857 | ||
| | |||
|- | |||
| | |||
| 15\53 | |||
| | |||
|197.802 | |||
|15 | |||
|8 | |||
|1.875 | |||
| | |||
|- | |||
| | |||
|17\60 | |||
| | |||
|198.058 | |||
|17 | |||
|9 | |||
|1.889 | |||
| | |||
|- | |- | ||
| | | | ||
|19\67 | |||
| | |||
|198.261 | |||
|19 | |||
|10 | |||
|1.900 | |||
| | | | ||
|- | |- | ||
| | | | ||
|21\74 | |||
| | | | ||
| | |198.425 | ||
| | |21 | ||
| | |11 | ||
|1. | |1.909 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |23\81 | ||
| | | | ||
| | |198.561 | ||
| | |23 | ||
| | |12 | ||
|1. | |1.917 | ||
| | | | ||
|- | |- | ||
| | | | ||
|25\88 | |||
| | | | ||
| | |198.675 | ||
| | |25 | ||
| | |13 | ||
|1. | |1.923 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |27\95 | ||
| | | | ||
| | |198.773 | ||
|27 | |||
|14 | |14 | ||
|1.929 | |||
|1. | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |29\102 | ||
| | | | ||
| | | 198.857 | ||
| | |29 | ||
| | |15 | ||
|1. | |1.933 | ||
| | | | ||
|- | |- | ||
| | | | ||
|31\109 | |||
| | | | ||
| | |198.930 | ||
| | | 31 | ||
| | |16 | ||
|1. | |1.9375 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |33\116 | ||
| | | | ||
| | |198.995 | ||
| | |33 | ||
| | | 17 | ||
|1. | |1.941 | ||
| | | | ||
|- | |- | ||
|2\7 | |||
| | | | ||
| | | | ||
| | |199.009 | ||
| | | 2 | ||
| | |1 | ||
| | |2.000 | ||
|Napoli-Meantone ends, Napoli-Pythagorean begins | |||
|- | |||
| | |||
|17\59 | |||
| | |||
| 200 | |||
|17 | |||
|8 | |||
|2.125 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |15\52 | ||
| | | | ||
| | |201.{{Overline|9801}} | ||
| | |15 | ||
|7 | |7 | ||
| | |2.143 | ||
| | | | ||
|- | |- | ||
| | | | ||
|13\ | |13\45 | ||
| | | | ||
| | |202.247 | ||
|13 | |13 | ||
| | |6 | ||
| | |2.167 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |11\38 | ||
| | | | ||
| | |202.597 | ||
|11 | |11 | ||
| | |5 | ||
|2.200 | |||
| | | | ||
|- | |- | ||
| | | | ||
|9\31 | |||
| | | | ||
| | |203.077 | ||
|9 | |9 | ||
| | |4 | ||
|2.250 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |7\24 | ||
| | | | ||
| | |203.774 | ||
|7 | |7 | ||
| | |3 | ||
|2.333 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | | | ||
| | | 12\41 | ||
| | |204.878 | ||
|5 | |12 | ||
| | | 5 | ||
|2.400 | |||
| | | | ||
|- | |- | ||
| | | | ||
|5\ | |5\17 | ||
| | | | ||
| | |205.714 | ||
|5 | |5 | ||
| | |2 | ||
| | |2.500 | ||
| | |Napoli-Neogothic heartland is from here… | ||
|- | |- | ||
| | | | ||
| | | | ||
| | |18\61 | ||
| | |206.897 | ||
| | |18 | ||
|7 | |7 | ||
| | |2.571 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |8\27 | ||
| | | | ||
|207.693 | |||
|8 | |||
|3 | |||
|2.667 | |||
|…to here | |||
|- | |- | ||
| | | | ||
| | |11\37 | ||
| | | | ||
| | |208.000 | ||
| | | 11 | ||
| | | 4 | ||
| | |2.750 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |14\47 | ||
| | | | ||
| | |208.696 | ||
| | |14 | ||
| | |5 | ||
| | |2.800 | ||
| | | | ||
|- | |- | ||
| 3\10 | |||
| | | | ||
| | | | ||
| | |209.524 | ||
| | | 3 | ||
|1 | |||
|3.000 | |||
|Napoli-Pythagorean ends, Napoli-Archy begins | |||
|- | |||
| | |||
|22\73 | |||
| | |||
|210.000 | |||
|22 | |||
|7 | |7 | ||
| | |3.143 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |19\63 | ||
| | | | ||
| | |211.755 | ||
| | |19 | ||
| | |6 | ||
| | |3.167 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |16\53 | ||
| | | | ||
| | |212.903 | ||
| | |16 | ||
| | |5 | ||
| | |3.200 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |13\43 | ||
| | | | ||
| | |213.084 | ||
| | |13 | ||
| | |4 | ||
| | |3.250 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |10\33 | ||
| | | | ||
| | |213.{{Overline|3}} | ||
| | | 10 | ||
| | |3 | ||
| | |3.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
|23 | |7\23 | ||
| | | | ||
| | |213.699 | ||
| | |7 | ||
| | |2 | ||
| | |3.500 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |11\36 | ||
| | | | ||
| | |214.286 | ||
| | |11 | ||
| | |3 | ||
| | | 3.667 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |15\49 | ||
| | | | ||
| | | 215.385 | ||
| | |15 | ||
| | |4 | ||
| | | 3.750 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |19\62 | ||
| | | | ||
| | | 216.393 | ||
| | |19 | ||
| | |5 | ||
| | |3.800 | ||
| | | | ||
|- | |- | ||
|4\13 | |||
| | | | ||
| | | | ||
| | |216.867 | ||
| | |4 | ||
| | |1 | ||
| | |4.000 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |13\42 | ||
| | | | ||
| | |217.143 | ||
| | |13 | ||
| | |3 | ||
| | |4.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
|9\29 | |||
| | | | ||
| | |218.{{Overline|18}} | ||
|9 | |||
|2 | |2 | ||
| | |4.500 | ||
| | |||
| | |||
|- | |- | ||
| | | | ||
| | |14\45 | ||
| | | | ||
| | |219.718 | ||
| | |14 | ||
| | |3 | ||
| | |4.667 | ||
| | | | ||
|- | |- | ||
|5\16 | |||
| | | | ||
| | | | ||
| 220.408 | |||
| 5 | |||
|1 | |||
|5.000 | |||
|Napoli-Archy ends | |||
|- | |- | ||
| | | | ||
| | |16\51 | ||
| | | | ||
| | |221.053 | ||
| | |16 | ||
| | | 3 | ||
| | |5.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
|11\ | |11\35 | ||
| | | | ||
| | |222.{{Overline|2}} | ||
|11 | |11 | ||
| | |2 | ||
| | |5.500 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |17\54 | ||
| | | | ||
| | |223.728 | ||
| | |17 | ||
|3 | |3 | ||
| | | 5.667 | ||
| | | | ||
|- | |- | ||
|6\19 | |||
| | | | ||
| | | | ||
| | |224.176 | ||
|6 | |||
| | |1 | ||
| | |6.000 | ||
| | |||
| | | | ||
|- | |- | ||
| 1\3 | |||
| | | | ||
| | | | ||
|225.000 | |||
|1 | |||
|0 | |||
|→ inf | |||
|Paucitonic | |||
|- | |- | ||
| | | | ||
| | | | ||
| | | | ||
| | |240.000 | ||
| | | | ||
| | | | ||
| | | | ||
| | | | ||
|} | |} | ||
Revision as of 05:31, 10 July 2023
3L 1s<perfect fifth> is constructed by repeating the fifth-spanning pattern LLLs of the ordinary diatonic mos (5L 2s) at the equave of 3/2. The so-called "Super Ultra Hyper Mega Meta Lydian" is one mode of this mos.
The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating 3L 1s. The name of the period interval is called the sesquitave (by analogy to the tritave). The generator range is 171.4 to 240 cents, placing it near the diatonic major second, usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents).
In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords.
Angel is a proposed name for this mos. Basic Angel is in 7edf, which is a very good fifth-based equal tuning similar to 12edo.
Notation
There are 4 main ways to notate the angel scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate angel scales as repeating at the double, triple, quadruple, quintuple or sextuple sesquitave (major ninth, thirteenth, seventeenth i. e. ~pentave or twenty-first or augmented twenty-fifth), however it does make navigating the genchain harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s], a major thirteenth which is the Dorian mode of Bijou[9L 3s], an ~pentave which is the Mixolydian mode of Hextone[12L 4s], a major twenty-first which is the Ionian mode of Guidotonic[15L 5s] or an augmented twenty-fifth which is the Lydian mode of Subdozenal[18L 6s]. Since there are exactly 8 naturals in double sesquitave notation, 12 in triple sesquitave notation, 16 in quadruple sesquitave notation, 20 in quintuple sesquitave notation and 24 in sextuple sesquitave notation, letters A-H (FGABHCDEF), dozenal or hex digits (0123456789XE0 or D1234567FGACD with flats written C molle or 0123456789ABCDEF0 or G123456789ABCDEFG with flats written F molle), the Guidonian names with F as the lowest ut or letters except I and O may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Diatonic | Napoli | ~15edf | ~11edf | ~18edf | ~7edf | ~17edf | ~10edf | ~13edf |
Do#, Sol# | F# | 1\15, 46.154 | 1\11, 63.158 | 2\18, 77.419 | 1\7, 100 | 3\17, 124.138 | 2\10, 141.176 | 3\13, 163.63 |
Reb, Lab | Gb | 3\15, 138.462 | 2\11. 126.316 | 3\18, 116.129 | 2\17, 82.759 | 1\10, 70.588 | 1\13, 54.54 | |
Re, La | G | 4\15, 184.615 | 3\11, 189.474 | 5\18, 193.548 | 2\7, 200 | 5\17, 206.897 | 3\10, 211.765 | 4\13, 218.18 |
Re#, La# | G# | 5\15, 230.769 | 4\11, 252.632 | 7\18, 270.968 | 3\7, 300 | 8\17, 331.034 | 5\10, 352.941 | 7\13, 381.81 |
Mib, Sib | Ab | 7\15, 323.077 | 5\11, 315.789 | 8\18, 309.677 | 7\17, 289.655 | 4\10, 282.353 | 5\13, 272.72 | |
Mi, Si | A | 8\15, 369.231 | 6\11, 378.947 | 10\18, 387.097 | 4\7, 400 | 10\17, 413.793 | 6\10, 423.529 | 8\13, 436.36 |
Mi#, Si# | A# | 9\15, 415.385 | 7\11, 442.105 | 12\18, 464.516 | 5\7, 500 | 13\17, 537.069 | 8\10, 564.706 | 11\13, 600 |
Fab, Dob | Bbb | 10\15, 461.538 | 11\18, 425.806 | 4\7, 400 | 9\17, 372.414 | 5\10, 352.941 | 6\13, 327.27 | |
Fa, Do | Bb | 11\15, 507.692 | 8\11, 505.263 | 13\18, 503.226 | 5\7, 500 | 12\17, 496.552 | 7\10, 494.118 | 9\13, 490.90 |
Fa#, Do# | B | 12\15, 553.846 | 9\11, 568.421 | 15\18, 580.645 | 6\7, 600 | 15\17, 620.690 | 9\10, 635.294 | 12\13, 654.54 |
Fax, Dox | B# | 13\15, 600 | 10\11, 631.579 | 17\18, 658.064 | 7\7, 700 | 18\17, 744.828 | 11\10, 776.471 | 15\13, 818.18 |
Dob, Solb | Hb | 14\15, 646.154 | 16\18, 619.355 | 6\7, 600 | 14\17, 579.310 | 8\10, 564.706 | 10\13, 545.45 | |
Do, Sol | H | 15\15, 692.308 | 11\11, 694.737 | 18\18, 696.774 | 7\7, 700 | 17\17, 703.448 | 10\10, 705.882 | 13\13, 709.09 |
Do#, Sol# | Η# | 16\15, 738.462 | 12\11, 757.895 | 20\18, 774.194 | 8\8, 800 | 20\17, 827.586 | 12\10, 847.059 | 16\13, 872.72 |
Reb, Lab | Cb | 18\15, 830.769 | 13\11, 821.053 | 21\18, 812.903 | 19\17, 786.207 | 11\10, 776.471 | 14\13, 763.63 | |
Re, La | C | 19\15, 876.923 | 14\11, 884.211 | 23\18, 890.323 | 9\5, 900 | 22\17, 910.345 | 13\10, 917.647 | 17\13, 927.27 |
Re#, La# | C# | 20\15, 923.077 | 15\11, 947.368 | 25\18, 967.742 | 10\7, 1000 | 25\17, 1034.483 | 15\10, 1058.824 | 20\13, 1090.90 |
Mib, Sib | Db | 22\15, 1015.385 | 16\11, 1010.526 | 26\18, 1006.452 | 24\17, 993.103 | 14\10, 988.235 | 18\13, 981.81 | |
Mi, Si | D | 23\15, 1061.538 | 17\11, 1073.684 | 28\18, 1083.871 | 11\7, 1100 | 27\17, 1117.241 | 16\10, 1129.412 | 21\9, 1145.45 |
Mi#, Si# | D# | 24\15, 1107.923 | 18\11, 1136.842 | 30\18, 1161.29 | 12\7, 1200 | 30\17, 1241.379 | 18\10, 1270.588 | 24\13, 1309.09 |
Fab, Dob | Ebb | 25\15, 1153.846 | 29\18, 1122.581 | 11\7, 1100 | 26\17, 1075.862 | 15\10, 1058.824 | 19\13, 1036.36 | |
Fa, Do | Eb | 26\15, 1200 | 19\11, 1200 | 31\18, 1200 | 12\7, 1200 | 29\17, 1200 | 17\10, 1200 | 22\13, 1200 |
Fa#, Do# | E | 27\15, 1246.154 | 20\11, 1263.158 | 33\18, 1277.419 | 13\7, 1300 | 32\17, 1324.138 | 19\10, 1341.176 | 25\13, 1363.63 |
Fax, Dox | E# | 28\15, 1292.308 | 21\11, 1326.318 | 35\18, 1354.834 | 14\7, 1400 | 35\17, 1448.275 | 21\10, 1482.353 | 28\13, 1527.27 |
Dob, Solb | Fb | 29\15, 1338.462 | 34\18, 1316.129 | 13\7, 1300 | 31\17, 1282.759 | 18\10, 1270.588 | 23\13, 1254.54 | |
Do, Sol | F | 30\15, 1384.615 | 22\11, 1389.473 | 36\18, 1393.548 | 14\7, 1400 | 34\17, 1406.897 | 20\10, 1411.765 | 26\13, 1418.18 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Bijou | Hextone | ~15edf | ~11edf | ~18edf | ~7edf | ~17edf | ~10edf | ~13edf |
0#, D# | 0#, G# | 1\15, 46.154 | 1\11, 63.158 | 2\18, 77.419 | 1\7, 100 | 3\17, 124.138 | 2\10, 141.176 | 3\13, 163.63 |
1b, 1c | 1f | 3\15, 138.462 | 2\11. 126.316 | 3\18, 116.129 | 2\17, 82.759 | 1\10, 70.588 | 1\13, 54.54 | |
1 | 1 | 4\15, 184.615 | 3\11, 189.474 | 5\18, 193.548 | 2\7, 200 | 5\17, 206.897 | 3\10, 211.765 | 4\13, 218.18 |
1# | 1# | 5\15, 230.769 | 4\11, 252.632 | 7\18, 270.968 | 3\7, 300 | 8\17, 331.034 | 5\10, 352.941 | 7\13, 381.81 |
2b, 2c | 2f | 7\15, 323.077 | 5\11, 315.789 | 8\18, 309.677 | 7\17, 289.655 | 4\10, 282.353 | 5\13, 272.72 | |
2 | 2 | 8\15, 369.231 | 6\11, 378.947 | 10\18, 387.097 | 4\7, 400 | 10\17, 413.793 | 6\10, 423.529 | 8\13, 436.36 |
2# | 2# | 9\15, 415.385 | 7\11, 442.105 | 12\18, 464.516 | 5\7, 500 | 13\17, 537.069 | 8\10, 564.706 | 11\13, 600 |
3b, 3c | 3f | 10\15, 461.538 | 11\18, 425.806 | 4\7, 400 | 9\17, 372.414 | 5\10, 352.941 | 6\13, 327.27 | |
3 | 3 | 11\15, 507.692 | 8\11, 505.263 | 13\18, 503.226 | 5\7, 500 | 12\17, 496.552 | 7\10, 494.118 | 9\13, 490.90 |
3# | 3# | 12\15, 553.846 | 9\11, 568.421 | 15\18, 580.645 | 6\7, 600 | 15\17, 620.690 | 9\10, 635.294 | 12\13, 654.54 |
3x | 3x | 13\15, 600 | 10\11, 631.579 | 17\18, 658.064 | 7\7, 700 | 18\17, 744.828 | 11\10, 776.471 | 15\13, 818.18 |
4b, 4c | 4f | 14\15, 646.154 | 16\18, 619.355 | 6\7, 600 | 14\17, 579.310 | 8\10, 564.706 | 10\13, 545.45 | |
4 | 4 | 15\15, 692.308 | 11\11, 694.737 | 18\18, 696.774 | 7\7, 700 | 17\17, 703.448 | 10\10, 705.882 | 13\13, 709.09 |
4# | 4# | 16\15, 738.462 | 12\11, 757.895 | 20\18, 774.194 | 8\8, 800 | 20\17, 827.586 | 12\10, 847.059 | 16\13, 872.72 |
5b, 5c | 5 | 18\15, 830.769 | 13\11, 821.053 | 21\18, 812.903 | 19\17, 786.207 | 11\10, 776.471 | 14\13, 763.63 | |
5 | 5 | 19\15, 876.923 | 14\11, 884.211 | 23\18, 890.323 | 9\5, 900 | 22\17, 910.345 | 13\10, 917.647 | 17\13, 927.27 |
5# | 5# | 20\15, 923.077 | 15\11, 947.368 | 25\18, 967.742 | 10\7, 1000 | 25\17, 1034.483 | 15\10, 1058.824 | 20\13, 1090.90 |
6b, 6c | 6f | 22\15, 1015.385 | 16\11, 1010.526 | 26\18, 1006.452 | 24\17, 993.103 | 14\10, 988.235 | 18\13, 981.81 | |
6 | 6 | 23\15, 1061.538 | 17\11, 1073.684 | 28\18, 1083.871 | 11\7, 1100 | 27\17, 1117.241 | 16\10, 1129.412 | 21\9, 1145.45 |
6# | 6# | 24\15, 1107.923 | 18\11, 1136.842 | 30\18, 1161.290 | 12\7, 1200 | 30\17, 1241.379 | 18\10, 1270.588 | 24\13, 1309.09 |
7b, 7c | 7f | 25\15, 1153.846 | 29\18, 1122.581 | 11\7, 1100 | 26\17, 1075.862 | 15\10, 1058.824 | 19\13, 1036.36 | |
7 | 7 | 26\15, 1200 | 19\11, 1200 | 31\18, 1200 | 12\7, 1200 | 29\17, 1200 | 17\10, 1200 | 22\13, 1200 |
7# | 7# | 27\15, 1246.154 | 20\11, 1263.158 | 33\18, 1277.419 | 13\7, 1300 | 32\17, 1324.138 | 19\10, 1341.176 | 25\13, 1363.63 |
7x | 7x | 28\15, 1292.308 | 21\11, 1326.318 | 35\18, 1354.834 | 14\7, 1400 | 35\17, 1448.275 | 21\10, 1482.353 | 28\13, 1527.27 |
8b, Fc | 8f | 29\15, 1338.462 | 34\18, 1316.129 | 13\7, 1300 | 31\17, 1282.759 | 18\10, 1270.588 | 23\13, 1254.54 | |
8, F | 8 | 30\15, 1384.615 | 22\11, 1389.473 | 36\18, 1393.548 | 14\7, 1400 | 34\17, 1406.897 | 20\10, 1411.765 | 26\13, 1418.18 |
8#, F# | 8# | 31\15, 1430.769 | 23\11, 1452.632 | 38\18, 1470.968 | 15\7, 1500 | 37\17, 1531.034 | 22\10, 1552.941 | 29\13, 1581.81 |
9b, Gc | 9f | 33\15, 1523.077 | 24\11, 1515.789 | 39\18, 1509.677 | 36\17, 1489.655 | 21\10, 1482.759 | 27\13, 1472.72 | |
9, G | 9 | 34\15, 1569.231 | 25\11, 1578.947 | 41\18, 1587.097 | 16\7, 1600 | 39\17, 1613.793 | 23\10, 1623.529 | 30\13, 1636.36 |
9#, G# | 9# | 35\15, 1615.385 | 26\11, 1642.105 | 43\18, 1664.516 | 17\7, 1700 | 42\17, 1737.069 | 25\10, 1764.706 | 33\13, 1800 |
Xb, Ac | Af | 37\15, 1707.692 | 27\11, 1705.263 | 44\18, 1703.226 | 41\17, 1696.552 | 24\10, 1694.118 | 31\13, 1690.90 | |
X, A | A | 38\15, 1753.846 | 28\11, 1768.421 | 46\18, 1780.645 | 18\7, 1800 | 44\17, 1820.690 | 26\10, 1835.294 | 34\13, 1854.54 |
X#, A# | A# | 39\15, 1800 | 29\11, 1831.579 | 48\18, 1858.064 | 19\7, 1900 | 47\17, 1944.828 | 28\10, 1976.471 | 37\13, 2018.18 |
Ebb, Ccc | Ax | 40\15, 1846.154 | 47\18, 1819.355 | 18\7, 1800 | 43\17, 1779.310 | 25\10, 1764.706 | 32\13, 1745.45 | |
Eb, Cc | Bf | 41\15, 1892.308 | 30\11, 1894.737 | 49\18, 1896.774 | 19\7, 1900 | 46\17, 1903.448 | 27\10, 1905.882 | 35\13, 1909.09 |
E, C | B | 42\15, 1938.462 | 31\11, 1957.895 | 51\18, 1974.194 | 20\7, 2000 | 49\17, 2027.586 | 29\10, 2047.059 | 38\13, 2072.72 |
Ex, Cx | B# | 43\15, 1984.615 | 32\11, 2021.053 | 53\18, 2051.612 | 21\7, 2100 | 52\17, 2151.725 | 31\10, 2188.235 | 41\13, 2236.36 |
0b, Dc | Cf | 44\15, 2030.769 | 52\18, 2012.903 | 20\7, 2000 | 48\17, 1986.207 | 28\10, 1976.471 | 36\13, 1963.63 | |
0, D | C | 45\15, 2076.923 | 33\11, 2084.211 | 54\18, 2090.323 | 21\7, 2100 | 51\17, 2110.345 | 30\10, 2117.647 | 39\13, 2127.27 |
0#, D# | C# | 46\15, 2123.077 | 34\11, 2147.368 | 56\15, 2167.742 | 22\7, 2200 | 54\17, 2234.483 | 32\10, 2258.824 | 42\13, 2090.90 |
1b, 1c | Df | 48\15, 2215.385 | 35\11, 2210.526 | 57\15, 2206.452 | 53\17, 2193.103 | 31\10, 2188.235 | 40\13, 2181.81 | |
1 | D | 49\15, 2261.538 | 36\11, 1073.684 | 59\18, 2283.871 | 23\7, 2300 | 56\17, 2317.241 | 33\10, 2329.412 | 43\13, 2345.45 |
1# | D# | 50\15, 2307.692 | 37\11, 2336.842 | 61\18, 2361.290 | 24\7, 2400 | 59\17, 2441.379 | 35\10, 2470.588 | 46\13, 2509.09 |
2b, 2c | Ef | 52\15, 2400 | 38\11, 2400 | 62\18, 2400 | 58\17, 2400 | 34\10, 2400 | 44\13, 2400 | |
2 | E | 53\15, 2446.154 | 39\11, 2463.158 | 64\18, 2477,419 | 25\7, 2500 | 61\17, 2524.138 | 36\10, 2541.176 | 47\13, 2563.63 |
2# | E# | 54\15, 2492.308 | 40\11, 2526.316 | 66\18, 2554.838 | 26\7, 2600 | 64\17, 2648.275 | 38\10, 2682.353 | 50\13, 2727.27 |
3b, 3c | Fff | 55\15,
2538.462 |
65\18, 2516.129 | 25\7, 2500 | 60\17, 2482.759 | 35\10, 2470.588 | 45\13, 2454.54 | |
3 | Ff | 56\15, 2584.615 | 41\11, 2589.474 | 67\18, 2593.548 | 26\7, 2600 | 63\17, 2606.897 | 37\10, 2611.765 | 48\13, 2618.18 |
3# | F | 57\15, 2630.769 | 42\11, 2652.632 | 69\18, 2670.968 | 27\7, 2700 | 66\17, 2731.034 | 39\10, 2752.941 | 51\13, 2781.81 |
3x | F# | 58\15, 2676.923 | 43\11, 2715.789 | 71\18, 2748.387 | 28\7, 2800 | 69\17, 2855.172 | 41\10, 2894.118 | 54\13, 2945.45 |
4bb, 4cc | 0ff, Gff | 42\11, 2652.632 | 68\18, 2632.258 | 26\7, 2600 | 62\17, 2565.517 | 36\10, 2541.176 | 46\13, 2509.09 | |
4b, 4c | 0f, Gf | 59\15, 2723.077 | 43\11, 2715.789 | 70\18, 2709.677 | 27\7, 2700 | 65\17, 2689.552 | 38\10, 2682.353 | 49\13, 2672.72 |
4 | 0, G | 60\15, 2769.231 | 44\11, 2778.947 | 72\18, 2787.097 | 28\7, 2800 | 68\17, 2813.793 | 40\10, 2823.529 | 52\13, 2836.36 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Guidotonic | Subdozenal | ~15edf | ~11edf | ~18edf | ~7edf | ~17edf | ~10edf | ~13edf |
F ut# | F# | 1\15, 46.154 | 1\11, 63.158 | 2\18, 77.419 | 1\7, 100 | 3\17, 124.138 | 2\10, 141.176 | 3\13, 163.63 |
G reb | Gb | 3\15, 138.462 | 2\11. 126.316 | 3\18, 116.129 | 2\17, 82.759 | 1\10, 70.588 | 1\13, 54.54 | |
G re | G | 4\15, 184.615 | 3\11, 189.474 | 5\18, 193.548 | 2\7, 200 | 5\17, 206.897 | 3\10, 211.765 | 4\13, 218.18 |
G re# | G# | 5\15, 230.769 | 4\11, 252.632 | 7\18, 270.968 | 3\7, 300 | 8\17, 331.034 | 5\10, 352.941 | 7\13, 381.81 |
A mib | Hb | 7\15, 323.077 | 5\11, 315.789 | 8\18, 309.677 | 7\17, 289.655 | 4\10, 282.353 | 5\13, 272.72 | |
A mi | H | 8\15, 369.231 | 6\11, 378.947 | 10\18, 387.097 | 4\7, 400 | 10\17, 413.793 | 6\10, 423.529 | 8\13, 436.36 |
A mi# | H# | 9\15, 415.385 | 7\11, 442.105 | 12\18, 464.516 | 5\7, 500 | 13\17, 537.069 | 8\10, 564.706 | 11\13, 600 |
B fa utb | Jbb | 10\15, 461.538 | 11\18, 425.806 | 4\7, 400 | 9\17, 372.414 | 5\10, 352.941 | 6\13, 327.27 | |
B fa ut | Jb | 11\15, 507.692 | 8\11, 505.263 | 13\18, 503.226 | 5\7, 500 | 12\17, 496.552 | 7\10, 494.118 | 9\13, 490.90 |
B fa ut# | J | 12\15, 553.846 | 9\11, 568.421 | 15\18, 580.645 | 6\7, 600 | 15\17, 620.690 | 9\10, 635.294 | 12\13, 654.54 |
B fa utx | J# | 13\15, 600 | 10\11, 631.579 | 17\18, 658.064 | 7\7, 700 | 18\17, 744.828 | 11\10, 776.471 | 15\13, 818.18 |
C sol reb | Kb | 14\15, 646.154 | 16\18, 619.355 | 6\7, 600 | 14\17, 579.310 | 8\10, 564.706 | 10\13, 545.45 | |
C sol re | K | 15\15, 692.308 | 11\11, 694.737 | 18\18, 696.774 | 7\7, 700 | 17\17, 703.448 | 10\10, 705.882 | 13\13, 709.09 |
C sol re# | K# | 16\15, 738.462 | 12\11, 757.895 | 20\18, 774.194 | 8\8, 800 | 20\17, 827.586 | 12\10, 847.059 | 16\13, 872.72 |
D la mib | Lb | 18\15, 830.769 | 13\11, 821.053 | 21\18, 812.903 | 19\17, 786.207 | 11\10, 776.471 | 14\13, 763.63 | |
D la mi | L | 19\15, 876.923 | 14\11, 884.211 | 23\18, 890.323 | 9\5, 900 | 22\17, 910.345 | 13\10, 917.647 | 17\13, 927.27 |
D la mi# | L# | 20\15, 923.077 | 15\11, 947.368 | 25\18, 967.742 | 10\7, 1000 | 25\17, 1034.483 | 15\10, 1058.824 | 20\13, 1090.90 |
E fa utb | Mb | 22\15, 1015.385 | 16\11, 1010.526 | 26\18, 1006.452 | 24\17, 993.103 | 14\10, 988.235 | 18\13, 981.81 | |
E fa ut | M | 23\15, 1061.538 | 17\11, 1073.684 | 28\18, 1083.871 | 11\7, 1100 | 27\17, 1117.241 | 16\10, 1129.412 | 21\9, 1145.45 |
E fa ut# | M# | 24\15, 1107.923 | 18\11, 1136.842 | 30\18, 1161.29 | 12\7, 1200 | 30\17, 1241.379 | 18\10, 1270.588 | 24\13, 1309.09 |
F sol re utb | Nbb | 25\15, 1153.846 | 29\18, 1122.581 | 11\7, 1100 | 26\17, 1075.862 | 15\10, 1058.824 | 19\13, 1036.36 | |
F sol re ut | Nb | 26\15, 1200 | 19\11, 1200 | 31\18, 1200 | 12\7, 1200 | 29\17, 1200 | 17\10, 1200 | 22\13, 1200 |
F sol re ut# | N | 27\15, 1246.154 | 20\11, 1263.158 | 33\18, 1277.419 | 13\7, 1300 | 32\17, 1324.138 | 19\10, 1341.176 | 25\13, 1363.63 |
F sol re utx | N# | 28\15, 1292.308 | 21\11, 1326.318 | 35\18, 1354.834 | 14\7, 1400 | 35\17, 1448.275 | 21\10, 1482.353 | 28\13, 1527.27 |
G la mi reb | Pb | 29\15, 1338.462 | 34\18, 1316.129 | 13\7, 1300 | 31\17, 1282.759 | 18\10, 1270.588 | 23\13, 1254.54 | |
G la mi re | P | 30\15, 1384.615 | 22\11, 1389.473 | 36\18, 1393.548 | 14\7, 1400 | 34\17, 1406.897 | 20\10, 1411.765 | 26\13, 1418.18 |
G la mi re# | P# | 31\15, 1430.769 | 23\11, 1452.632 | 38\18, 1470.968 | 15\7, 1500 | 37\17, 1531.034 | 22\10, 1552.941 | 29\13, 1581.81 |
A fab | Qbb | 32\15, 1476.923 | 37\18, 1432.258 | 14\7, 1400 | 33\17, 1365.517 | 19\10, 1341.175 | 24\13, 1309.09 | |
A fa | Qb | 33\15, 1523.077 | 24\11, 1515.789 | 39\18, 1509.677 | 15\7, 1500 | 36\17, 1489.655 | 21\10, 1482.759 | 27\13, 1472.72 |
A mi | Q | 34\15, 1569.231 | 25\11, 1578.947 | 41\18, 1587.097 | 16\7, 1600 | 39\17, 1613.793 | 23\10, 1623.529 | 30\13, 1636.36 |
A mi# | Q# | 35\15, 1615.385 | 26\11, 1642.105 | 43\18, 1664.516 | 17\7, 1700 | 42\17, 1737.069 | 25\10, 1764.706 | 33\13, 1800 |
B sol fa utb | Rb | 37\15, 1707.692 | 27\11, 1705.263 | 44\18, 1703.226 | 41\17, 1696.552 | 24\10, 1694.118 | 31\13, 1690.90 | |
B sol fa ut | R | 38\15, 1753.846 | 28\11, 1768.421 | 46\18, 1780.645 | 18\7, 1800 | 44\17, 1820.690 | 26\10, 1835.294 | 34\13, 1854.54 |
B sol fa ut# | R# | 39\15, 1800 | 29\11, 1831.579 | 48\18, 1858.064 | 19\7, 1900 | 47\17, 1944.828 | 28\10, 1976.471 | 37\13, 2018.18 |
C la sol reb | Sbb | 40\15, 1846.154 | 47\18, 1819.355 | 18\7, 1800 | 43\17, 1779.310 | 25\10, 1764.706 | 32\13, 1745.45 | |
C la sol re | Sb | 41\15, 1892.308 | 30\11, 1894.737 | 49\18, 1896.774 | 19\7, 1900 | 46\17, 1903.448 | 27\10, 1905.882 | 35\13, 1909.09 |
C la sol re# | S# | 42\15, 1938.462 | 31\11, 1957.895 | 51\18, 1974.194 | 20\7, 2000 | 49\17, 2027.586 | 29\10, 2047.059 | 38\13, 2072.72 |
C la sol rex | Sx | 43\15, 1984.615 | 32\11, 2021.053 | 53\18, 2051.612 | 21\7, 2100 | 52\17, 2151.725 | 31\10, 2188.235 | 41\13, 2236.36 |
D la mib | Tb | 44\15, 2030.769 | 52\18, 2012.903 | 20\7, 2000 | 48\17, 1986.207 | 28\10, 1976.471 | 36\13, 1963.63 | |
D la mi | T | 45\15, 2076.923 | 33\11, 2084.211 | 54\18, 2090.323 | 21\7, 2100 | 51\17, 2110.345 | 30\10, 2117.647 | 39\13, 2127.27 |
D la mib | T# | 46\15, 2123.077 | 34\11, 2147.368 | 56\15, 2167.742 | 22\7, 2200 | 54\17, 2234.483 | 32\10, 2258.824 | 42\13, 2090.90 |
E fa utb | Ub | 48\15, 2215.385 | 35\11, 2210.526 | 57\15, 2206.452 | 53\17, 2193.103 | 31\10, 2188.235 | 40\13, 2181.81 | |
E fa ut | U | 49\15, 2261.538 | 36\11, 1073.684 | 59\18, 2283.871 | 23\7, 2300 | 56\17, 2317.241 | 33\10, 2329.412 | 43\13, 2345.45 |
E fa ut# | U | 50\15, 2307.692 | 37\11, 2336.842 | 61\18, 2361.290 | 24\7, 2400 | 59\17, 2441.379 | 35\10, 2470.588 | 46\13, 2509.09 |
F sol re utb | Vb | 52\15, 2400 | 38\11, 2400 | 62\18, 2400 | 58\17, 2400 | 34\10, 2400 | 44\13, 2400 | |
F sol re ut | V | 53\15, 2446.154 | 39\11, 2463.158 | 64\18, 2477,419 | 25\7, 2500 | 61\17, 2524.138 | 36\10, 2541.176 | 47\13, 2563.63 |
F sol re ut# | V# | 54\15, 2492.308 | 40\11, 2526.316 | 66\18, 2554.838 | 26\7, 2600 | 64\17, 2648.275 | 38\10, 2682.353 | 50\13, 2727.27 |
G la mi reb | Wbb | 55\15,
2538.462 |
65\18, 2516.129 | 25\7, 2500 | 60\17, 2482.759 | 35\10, 2470.588 | 45\13, 2454.54 | |
G la mi re | Wb | 56\15, 2584.615 | 41\11, 2589.474 | 67\18, 2593.548 | 26\7, 2600 | 63\17, 2606.897 | 37\10, 2611.765 | 48\13, 2618.18 |
G la mi re# | W | 57\15, 2630.769 | 42\11, 2652.632 | 69\18, 2670.968 | 27\7, 2700 | 66\17, 2731.034 | 39\10, 2752.941 | 51\13, 2781.81 |
G la mi rex | W# | 58\15, 2676.923 | 43\11, 2715.789 | 71\18, 2748.387 | 28\7, 2800 | 69\17, 2855.172 | 41\10, 2894.118 | 54\13, 2945.45 |
A fab | Xbb | 42\11, 2652.632 | 68\18, 2632.258 | 26\7, 2600 | 62\17, 2565.517 | 36\10, 2541.176 | 46\13, 2509.09 | |
A fa | Xb | 59\15, 2723.077 | 43\11, 2715.789 | 70\18, 2709.677 | 27\7, 2700 | 65\17, 2689.552 | 38\10, 2682.353 | 49\13, 2672.72 |
A mi | X | 60\15, 2769.231 | 44\11, 2778.947 | 72\18, 2787.097 | 28\7, 2800 | 68\17, 2813.793 | 40\10, 2823.529 | 52\13, 2836.36 |
A mi# | X# | 61\15
2815; 2.6 |
45\11
2842; 9.5 |
74\18
2864; 1.9375 |
29\7
2900 |
71\17
2937; 1, 13.5 |
42\10
2964; 1, 2.4 |
55\13
3000 |
B sol fab | Yb | 63\15
2907; 1, 2, 4 |
46\11
2905; 3.8 |
75\18
2903; 4, 2, 3 |
70\17
2896; 1.8125 |
41\10
2894; 8.5 |
53\13
2890.90 | |
B sol fa | Y | 64\15
2953; 1, 5.5 |
47\11
2968; 2.375 |
77\18
2980; 1.55 |
30\7
3000 |
73\17
3020; 1.45 |
43\10
3035; 3.4 |
56\13
3054.54 |
B sol fa# | Y# | 65\15
3000 |
48\11
3031; 1, 1.375 |
79\18
3058; 15.5 |
31\7
3100 |
76\17
3144; 1, 4.8 |
45\10
3176: 2, 8 |
59\13
3218.18 |
C la solb | Zb | 67\15
3092; 3, 4 |
49\11
3094; 1, 2.8 |
80\18
3096; 1, 3, 2, 3 |
75\17
3103; 2, 2, 6 |
44\10
3105; 1, 7.5 |
57\13
3109.09 | |
C la sol | Z | 68\15
3138; 2, 6 |
50\11
3157; 1, 8.5 |
82\18
3174; 5, 6 |
32\7
3200 |
78\17
3227; 1, 1, 2.4 |
46\10
3247; 17 |
60\13
3272.72 |
C la sol# | Z# | 69\15
3184; 1.625 |
51\11
3221: 19 |
84\18
3251; 1, 1, 1, 1.4 |
33\7
3300 |
81\17
3351; 1, 2.625 |
48\10
3388; 4, 4 |
63\13
3436.36 |
D labb | Ab | 70\15
3230; 1.3 |
83\18
3212; 1, 9, 3 |
32\7
3200 |
77\17
3186; 4, 3 |
45\10
3176: 2, 8 |
58\13
3163.63 | |
D lab | A | 71\15
3276; 1, 12 |
52\11
3284; 4.75 |
85\18
3290; 3.1 |
33\7
3300 |
80\17
3310; 2.9 |
47\10
3317; 1, 1, 1.2 |
61\13
3327.27 |
D la | A# | 72\15
3323; 13 |
53\11
3347; 2, 1.4 |
87\18
3367; 1, 2.875 |
34\7
3400 |
83\17
3434; 2, 14 |
49\10
3458; 1, 4, 1.5 |
64\13
3490.90 |
D la# | Ax | 73\15
3369; 4, 3 |
54\15
3410; 1.9 |
89\18
3445; 6.2 |
35\7
3500 |
86\17
3558; 1, 1, 1, 1.75 |
51\10
3600 |
67\13
3654.54 |
F utb | Bb | 74\15
3415; 2.6 |
88\18
3406; 2, 4, 1.5 |
34\7
3400 |
82\17
3393; 9, 1.5 |
48\10
3388; 4, 4 |
62\13
3381.81 | |
F ut | B | 75\15
3461; 1, 1, 6 |
55\11
3473; 1, 2, 6 |
90\18
3483; 1, 6.75 |
35\7
3500 |
85\17
3517; 4, 7 |
50\10
3529; 2, 2, 3 |
65\13
3545.45 |
F ut# | B# | 76\15
3507; 1, 2, 4 |
56\15
3536; 1, 5, 3 |
92\18
3561: 3, 2, 4 |
36\7
3600 |
88\17
3641; 2, 1, 1.75 |
52\10
3670; 1.7 |
68\13
3709.09 |
G reb | Cb | 78\15
3600 |
57\15
3600 |
93\18
3600 |
87\17
3600 |
51\10
3600 |
66\13
3600 | |
G re | C | 79\15
3646; 6.5 |
58\11
3663; 6, 3 |
95\18
3677; 2, 2.6 |
37\7
3700 |
90\17
3724; 7, 4 |
53\17
3741; 5, 1.5 |
69\13
3763.63 |
G re# | C# | 80\15
3692; 4, 3 |
59\11
3726; 3, 6 |
97\18
3755; 5.2 |
38\7
3800 |
93\17
3848; 3.625 |
55\17
3882; 2, 1.2 |
72\13
3927.27 |
A mib | Db | 82\15
3784; 1.625 |
60\11
3789; 2,9 |
98\18
3793; 1, 1, 4, 1.5 |
92\17
3806; 1, 8, 1.5 |
54\17
3811; 1, 3, 4 |
70\13
3818.18 | |
A mi | D | 83\15
3830, 1.3 |
61\11
3852; 1, 1, 1.4 |
100\18
3870; 1, 30 |
39\7
3900 |
95\17
3931; 29 |
56\17
3952; 1, 16 |
73\13
3981.81 |
A mi# | D# | 84\15
3876; 1, 12 |
62\11
3915; 1, 3.75 |
102\18
3948; 2, 1, 1.4 |
40\7
4000 |
98\17
4055; 5.8 |
58\10
4094; 8.5 |
76\13
4145.45 |
B fa utb | Ebb | 85\15
3923; 13 |
101\18
3909; 1, 2.1 |
39\7
3900 |
94\17
3889; 1, 1.9 |
55\10
3882; 2, 1.2 |
71\13
3872.72 | |
B fa ut | Eb | 86\15
3969; 4, 3 |
63\11
3978; 1, 3.75 |
103\18
3987; 10, 3 |
40\7
4000 |
97\17
4013; 1, 3, 1.2 |
57\10
4023; 1, 1, 8 |
74\13
4036.36 |
B fa ut# | E | 87\15
4015; 2.6 |
64\11
4042; 9.5 |
105\18
4064; 1.9375 |
41\7
4100 |
100\17
4137; 1, 13.5 |
59\10
4164; 1, 2.4 |
77\13
4200 |
B fa utx | E# | 88\15
4061; 1, 1, 6 |
65\11
4105; 3.8 |
107\18
4141; 1, 14.5 |
42\7
4200 |
103\17
4262; 14.5 |
61\10
4305; 1, 7.5 |
80\13
4363.63 |
C sol reb | Fb | 89\15
4107; 1.3 |
106\18
4103; 4, 2, 3 |
41\7
4100 |
99\17
4096; 1.8125 |
58\10
4094; 8.5 |
75\13
4090.90 | |
C sol re | F | 90\15
4153; 1, 5.5 |
66\11
4168; 2.375 |
108\18
4180; 1.55 |
42\7
4200 |
102\17
4220; 1.45 |
60\10
4235; 3.4 |
78\13
4254.54 |
Intervals
Generators | Sesquitave notation | Interval category name | Generators | Notation of 3/2 inverse | Interval category name |
---|---|---|---|---|---|
The 4-note MOS has the following intervals (from some root): | |||||
0 | Do, Sol | perfect unison | 0 | Do, Sol | sesquitave (just fifth) |
1 | Fa, Do | perfect fourth | -1 | Re, La | perfect second |
2 | Mib, Sib | minor third | -2 | Mi, Si | major third |
3 | Reb, Lab | diminished second | -3 | Fa#, Do# | augmented fourth |
The chromatic 7-note MOS also has the following intervals (from some root): | |||||
4 | Dob, Solb | diminished sesquitave | -4 | Do#, Sol# | augmented unison (chroma) |
5 | Fab, Dob | diminished fourth | -5 | Re#, La# | augmented second |
6 | Mibb, Sibb | diminished third | -6 | Mi#, Si# | augmented third |
Genchain
The generator chain for this scale is as follows:
Mibb
Sibb |
Fab
Dob |
Dob
Solb |
Reb
Lab |
Mib
Sib |
Fa
Do |
Do
Sol |
Re
La |
Mi
Si |
Fa#
Do# |
Do#
Sol# |
Re#
La# |
Mi#
Si# |
d3 | d4 | d5 | d2 | m3 | P4 | P1 | P2 | M3 | A4 | A1 | A2 | A3 |
Modes
The mode names are based on the species of fifth:
Mode | Scale | UDP | Interval type | ||
---|---|---|---|---|---|
name | pattern | notation | 2nd | 3rd | 4th |
Lydian | LLLs | 3|0 | P | M | A |
Major | LLsL | 2|1 | P | M | P |
Minor | LLsL | 1|2 | P | m | P |
Phrygian | sLLL | 0|3 | d | m | P |
Temperaments
The most basic rank-2 temperament interpretation of angel is Napoli. The name "Napoli" comes from the “Neapolitan” sixth triad spelled root-(p-2g)-(2p-3g)
(p = 3/2, g = the whole tone) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations.
Napoli-Meantone
Subgroup: 3/2.6/5.8/5
POL2 generator: ~9/8 = 192.6406¢
Mapping: [⟨1 1 2], ⟨0 -2 -3]]
Optimal ET sequence: ~(7edf, 11edf, 18edf)
Napoli-Archy
Subgroup: 3/2.7/6.14/9
POL2 generator: ~8/7 = 218.6371¢
Mapping: [⟨1 1 2], ⟨0 -2 -3]]
Optimal ET sequence: ~(7edf, 10edf, 13edf, 16edf)
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents | L | s | L/s | Comments | ||
---|---|---|---|---|---|---|---|
1\4 | 171.429 | 1 | 1 | 1.000 | Equalised | ||
6\23 | 180.000 | 6 | 5 | 1.200 | |||
5\19 | 181.81 | 5 | 4 | 1.250 | |||
14\53 | 182.609 | 14 | 11 | 1.273 | |||
9\34 | 183.051 | 9 | 7 | 1.286 | |||
4\15 | 184.615 | 4 | 3 | 1.333 | |||
11\41 | 185.915 | 11 | 8 | 1.375 | |||
7\26 | 186.6 | 7 | 5 | 1.400 | |||
10\37 | 187.5 | 10 | 7 | 1.429 | |||
13\48 | 187.952 | 13 | 9 | 1.444 | |||
16\59 | 188.253 | 16 | 11 | 1.455 | |||
3\11 | 189.474 | 3 | 2 | 1.500 | Napoli-Meantone starts here | ||
14\51 | 190.90 | 14 | 9 | 1.556 | |||
11\40 | 191.304 | 11 | 7 | 1.571 | |||
8\29 | 192.000 | 8 | 5 | 1.600 | |||
5\18 | 193.548 | 5 | 3 | 1.667 | |||
12\43 | 194.594 | 12 | 7 | 1.714 | |||
7\25 | 195.348 | 7 | 4 | 1.750 | |||
9\32 | 196.36 | 9 | 5 | 1.800 | |||
11\39 | 197.015 | 11 | 6 | 1.833 | |||
13\46 | 197.468 | 13 | 7 | 1.857 | |||
15\53 | 197.802 | 15 | 8 | 1.875 | |||
17\60 | 198.058 | 17 | 9 | 1.889 | |||
19\67 | 198.261 | 19 | 10 | 1.900 | |||
21\74 | 198.425 | 21 | 11 | 1.909 | |||
23\81 | 198.561 | 23 | 12 | 1.917 | |||
25\88 | 198.675 | 25 | 13 | 1.923 | |||
27\95 | 198.773 | 27 | 14 | 1.929 | |||
29\102 | 198.857 | 29 | 15 | 1.933 | |||
31\109 | 198.930 | 31 | 16 | 1.9375 | |||
33\116 | 198.995 | 33 | 17 | 1.941 | |||
2\7 | 199.009 | 2 | 1 | 2.000 | Napoli-Meantone ends, Napoli-Pythagorean begins | ||
17\59 | 200 | 17 | 8 | 2.125 | |||
15\52 | 201.9801 | 15 | 7 | 2.143 | |||
13\45 | 202.247 | 13 | 6 | 2.167 | |||
11\38 | 202.597 | 11 | 5 | 2.200 | |||
9\31 | 203.077 | 9 | 4 | 2.250 | |||
7\24 | 203.774 | 7 | 3 | 2.333 | |||
12\41 | 204.878 | 12 | 5 | 2.400 | |||
5\17 | 205.714 | 5 | 2 | 2.500 | Napoli-Neogothic heartland is from here… | ||
18\61 | 206.897 | 18 | 7 | 2.571 | |||
8\27 | 207.693 | 8 | 3 | 2.667 | …to here | ||
11\37 | 208.000 | 11 | 4 | 2.750 | |||
14\47 | 208.696 | 14 | 5 | 2.800 | |||
3\10 | 209.524 | 3 | 1 | 3.000 | Napoli-Pythagorean ends, Napoli-Archy begins | ||
22\73 | 210.000 | 22 | 7 | 3.143 | |||
19\63 | 211.755 | 19 | 6 | 3.167 | |||
16\53 | 212.903 | 16 | 5 | 3.200 | |||
13\43 | 213.084 | 13 | 4 | 3.250 | |||
10\33 | 213.3 | 10 | 3 | 3.333 | |||
7\23 | 213.699 | 7 | 2 | 3.500 | |||
11\36 | 214.286 | 11 | 3 | 3.667 | |||
15\49 | 215.385 | 15 | 4 | 3.750 | |||
19\62 | 216.393 | 19 | 5 | 3.800 | |||
4\13 | 216.867 | 4 | 1 | 4.000 | |||
13\42 | 217.143 | 13 | 3 | 4.333 | |||
9\29 | 218.18 | 9 | 2 | 4.500 | |||
14\45 | 219.718 | 14 | 3 | 4.667 | |||
5\16 | 220.408 | 5 | 1 | 5.000 | Napoli-Archy ends | ||
16\51 | 221.053 | 16 | 3 | 5.333 | |||
11\35 | 222.2 | 11 | 2 | 5.500 | |||
17\54 | 223.728 | 17 | 3 | 5.667 | |||
6\19 | 224.176 | 6 | 1 | 6.000 | |||
1\3 | 225.000 | 1 | 0 | → inf | Paucitonic | ||
240.000 |
See also
3L 1s (3/2-equivalent) - idealized tuning
6L 2s (20/9-equivalent) - Neapolitan 1/2-comma meantone
6L 2s (52/23-equivalent) - Neapolitan gentle temperament
6L 2s (16/7-equivalent) - Neapolitan 1/2-comma archy
9L 3s (10/3-equivalent) - Bijou 1/3-comma meantone
9L 3s (22/13-equivalent) - Bijou gentle temperament
9L 3s (24/7-equivalent) - Bijou 1/3-comma archy
12L 4s (5/1-equivalent) - Hex meantone
12L 4s (56/11-equivalent) - Hextone gentle temperament
12L 4s (36/7-equivalent) - Hextone 1/4-comma archy
15L 5s (15/2-equivalent) - Guidotonic major 1/5-comma meantone
15L 5s (84/11-equivalent) - Guidotonic major gentle temperament
15L 5s (54/7-equivalent) - Guidotonic major 1/5-comma archy
18L 6s (11/1-equivalent) - Subdozenal harmonic tuning
18L 6s (56/5-equivalent) - Subdozenal low septimal tuning
18L 6s (80/7-equivalent) - Subdozenal high septimal tuning
18L 6s (128/11-equivalent) - Subdozenal subharmonic tuning
- ↑ Fractions repeating more than 4 digits written as continued fractions