31867edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Aura (talk | contribs)
No edit summary
Cleanup and improve intro
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|31867}} It is the denominator of the next convergent for log<sub>2</sub>3 past [[15601edo|15601]], before [[79335edo|79335]], and has a fifth which is about 0.00000039 cents compressed.


The '''31867edo''' divides the octave into 31867 equal parts of 0.03765651 cents each. It is the denominator of the next convergent for log<sub>2</sub>3 past [[15601edo|15601]], before [[79335edo|79335]], and has a fifth which is about 0.00000039 cents compressed.
31867edo is [[consistent]] through the [[21-odd-limit]], tempering out {{monzo| 305 -106 -59 }} and {{monzo| -122 285 -142 }} in the 5-limit; {{monzo| -7 30 -9 -7 }}, {{monzo| 51 -13 -1 -10 }}, and {{monzo| -8 2 -62 53 }} in the 7-limit; 6576668672/6576582375, 13841287201/13841203200, 11816941917501/11816406250000, and 28247524900000/28245855390489 in the 11-limit; [[123201/123200]], 1990656/1990625, 72773428/72772425, 1977326743/1977300000, and 6866455078125/6866343676192 in the 13-limit; 194481/194480, 336141/336140, 2000033/2000000, 9765888/9765625, 58464700/58461513, and 114244000/114243723 in the 17-limit; 89376/89375, 104976/104975, 165376/165375, 633556/633555, 709632/709631, and 742586/742577 in the 19-limit.
 
== Theory ==
31867edo is consistent through the [[21-odd-limit|21-odd limit]], tempering out |305 -106 -59&gt; and |-122 285 -142&gt; in the 5-limit; |-7 30 -9 -7&gt;, |51 -13 -1 -10&gt;, and |-8 2 -62 53&gt; in the 7-limit; 6576668672/6576582375, 13841287201/13841203200, 11816941917501/11816406250000, and 28247524900000/28245855390489 in the 11-limit; [[123201/123200]], 1990656/1990625, 72773428/72772425, 1977326743/1977300000, and 6866455078125/6866343676192 in the 13-limit; 194481/194480, 336141/336140, 2000033/2000000, 9765888/9765625, 58464700/58461513, and 114244000/114243723 in the 17-limit; 89376/89375, 104976/104975, 165376/165375, 633556/633555, 709632/709631, and 742586/742577 in the 19-limit.


=== Prime harmonics ===
{{Harmonics in equal|31867}}
{{Harmonics in equal|31867}}
[[Category:Equal divisions of the octave|#####]] <!-- 5-digit number -->

Revision as of 10:53, 14 February 2023

← 31866edo 31867edo 31868edo →
Prime factorization 11 × 2897
Step size 0.0376565 ¢ 
Fifth 18641\31867 (701.955 ¢)
(convergent)
Semitones (A1:m2) 3019:2396 (113.7 ¢ : 90.22 ¢)
Consistency limit 21
Distinct consistency limit 21

Template:EDO intro It is the denominator of the next convergent for log23 past 15601, before 79335, and has a fifth which is about 0.00000039 cents compressed.

31867edo is consistent through the 21-odd-limit, tempering out [305 -106 -59 and [-122 285 -142 in the 5-limit; [-7 30 -9 -7, [51 -13 -1 -10, and [-8 2 -62 53 in the 7-limit; 6576668672/6576582375, 13841287201/13841203200, 11816941917501/11816406250000, and 28247524900000/28245855390489 in the 11-limit; 123201/123200, 1990656/1990625, 72773428/72772425, 1977326743/1977300000, and 6866455078125/6866343676192 in the 13-limit; 194481/194480, 336141/336140, 2000033/2000000, 9765888/9765625, 58464700/58461513, and 114244000/114243723 in the 17-limit; 89376/89375, 104976/104975, 165376/165375, 633556/633555, 709632/709631, and 742586/742577 in the 19-limit.

Prime harmonics

Approximation of prime harmonics in 31867edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.0000 -0.0000 +0.0044 +0.0008 +0.0110 +0.0033 -0.0067 +0.0111 -0.0131 -0.0106 -0.0141
Relative (%) +0.0 -0.0 +11.7 +2.1 +29.3 +8.8 -17.8 +29.4 -34.9 -28.0 -37.4
Steps
(reduced)
31867
(0)
50508
(18641)
73993
(10259)
89462
(25728)
110242
(14641)
117922
(22321)
130255
(2787)
135369
(7901)
144152
(16684)
154809
(27341)
157875
(30407)