2684edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Eliora (talk | contribs)
No edit summary
Eliora (talk | contribs)
since now we have two sections adding header
Line 2: Line 2:
{{EDO intro|2684}}
{{EDO intro|2684}}


== Theory ==
2684edo is an extremely strong 13-limit system, with a lower 13-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] than any division until we reach [[5585edo]]. It is distinctly [[consistent]] through the [[17-odd-limit]], and is both a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak and zeta integral edo]]. It is [[enfactoring|enfactored]] in the 2.3.5.13 subgroup, with the same tuning as [[1342edo]], tempering out kwazy, {{monzo| -53 10 16 }}, senior, {{monzo| -17 62 -35 }} and egads, {{monzo| -36 52 51 }}. A 13-limit [[comma basis]] is {9801/9800, 10648/10647, 140625/140608, 196625/196608, 823680/823543}; it also tempers out 123201/123200. It is less accurate, but still quite accurate in the 17-limit; a comma basis is {4914/4913, 5832/5831, 9801/9800, 10648/10647, 28561/28560, 140625/140608}.  
2684edo is an extremely strong 13-limit system, with a lower 13-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] than any division until we reach [[5585edo]]. It is distinctly [[consistent]] through the [[17-odd-limit]], and is both a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak and zeta integral edo]]. It is [[enfactoring|enfactored]] in the 2.3.5.13 subgroup, with the same tuning as [[1342edo]], tempering out kwazy, {{monzo| -53 10 16 }}, senior, {{monzo| -17 62 -35 }} and egads, {{monzo| -36 52 51 }}. A 13-limit [[comma basis]] is {9801/9800, 10648/10647, 140625/140608, 196625/196608, 823680/823543}; it also tempers out 123201/123200. It is less accurate, but still quite accurate in the 17-limit; a comma basis is {4914/4913, 5832/5831, 9801/9800, 10648/10647, 28561/28560, 140625/140608}.  



Revision as of 21:09, 13 January 2023

← 2683edo 2684edo 2685edo →
Prime factorization 22 × 11 × 61
Step size 0.447094 ¢ 
Fifth 1570\2684 (701.937 ¢) (→ 785\1342)
Semitones (A1:m2) 254:202 (113.6 ¢ : 90.31 ¢)
Consistency limit 17
Distinct consistency limit 17

Template:EDO intro

Theory

2684edo is an extremely strong 13-limit system, with a lower 13-limit relative error than any division until we reach 5585edo. It is distinctly consistent through the 17-odd-limit, and is both a zeta peak and zeta integral edo. It is enfactored in the 2.3.5.13 subgroup, with the same tuning as 1342edo, tempering out kwazy, [-53 10 16, senior, [-17 62 -35 and egads, [-36 52 51. A 13-limit comma basis is {9801/9800, 10648/10647, 140625/140608, 196625/196608, 823680/823543}; it also tempers out 123201/123200. It is less accurate, but still quite accurate in the 17-limit; a comma basis is {4914/4913, 5832/5831, 9801/9800, 10648/10647, 28561/28560, 140625/140608}.

2684edo sets the septimal comma, 64/63, to an exact 1/44th of the octave (61 steps). As a corollary, it supports the period-44 ruthenium temperament.

Prime harmonics

Approximation of prime harmonics in 2684edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.018 -0.025 +0.027 -0.051 +0.009 +0.112 -0.196 -0.107 +0.080 -0.028
Relative (%) +0.0 -3.9 -5.5 +5.9 -11.4 +2.0 +25.0 -43.7 -24.0 +17.9 -6.3
Steps
(reduced)
2684
(0)
4254
(1570)
6232
(864)
7535
(2167)
9285
(1233)
9932
(1880)
10971
(235)
11401
(665)
12141
(1405)
13039
(2303)
13297
(2561)

Divisors

Since 2684 factors as 22 × 11 × 61, 2684edo has subset edos 2, 4, 11, 22, 44, 61, 122, 244, 671, and 1342.

Regular temperament properties

2684edo holds a record for the lowest relative error in the 13-limit. It is only bettered by 5585edo.

Rank-2 temperaments

Note: 5-limit temperaments represented by 1342edo are not included.

Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
44 1114\2684
(16\2684)
498.063
(7.154)
4/3
(18375/18304)
Ruthenium