Limmic temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Fredg999 category edits (talk | contribs)
Update keys and improve description for blackweed
Line 3: Line 3:
== Blacksmith ==
== Blacksmith ==
=== 5-limit (blackwood) ===
=== 5-limit (blackwood) ===
Subgroup: 2.3.5
[[Subgroup]]: 2.3.5


[[Comma list]]: 256/243
[[Comma list]]: 256/243
Line 11: Line 11:
Mapping generators: ~9/8, ~5
Mapping generators: ~9/8, ~5


[[POTE generator]]: ~5/4 = 399.594
[[Optimal tuning]] ([[POTE]]): ~9/8 = 1\5, ~5/4 = 399.594


{{Val list|legend=1| 5, 10, 15 }}
{{Val list|legend=1| 5, 10, 15 }}
Line 20: Line 20:
[[File:blacksmith10.jpg|alt=blacksmith10.jpg|thumb|Lattice of blacksmith]]
[[File:blacksmith10.jpg|alt=blacksmith10.jpg|thumb|Lattice of blacksmith]]


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 28/27, 49/48
[[Comma list]]: 28/27, 49/48
Line 30: Line 30:
{{Multival|legend=1| 0 5 0 8 0 -14 }}
{{Multival|legend=1| 0 5 0 8 0 -14 }}


[[POTE generator]]: ~5/4 = 392.767
[[Optimal tuning]] ([[POTE]]): ~9/8 = 1\5, ~5/4 = 392.767


{{Val list|legend=1| 5, 10, 15, 40b, 55b }}
{{Val list|legend=1| 5, 10, 15, 40b, 55b }}
Line 43: Line 43:
Mapping: [{{val| 5 8 0 14 29 }}, {{val| 0 0 1 0 -1 }}]
Mapping: [{{val| 5 8 0 14 29 }}, {{val| 0 0 1 0 -1 }}]


POTE generator: ~5/4 = 394.948
Optimal tuning (POTE): ~9/8 = 1\5, ~5/4 = 394.948


Optimal GPV sequence: {{Val list| 5, 10, 15, 40be, 55be, 70bde, 85bcde }}
Optimal GPV sequence: {{Val list| 5, 10, 15, 40be, 55be, 70bde, 85bcde }}
Line 56: Line 56:
Mapping: [{{val| 5 8 0 14 29 7 }}, {{val| 0 0 1 0 -1 1 }}]
Mapping: [{{val| 5 8 0 14 29 7 }}, {{val| 0 0 1 0 -1 1 }}]


POTE generator: ~5/4 = 391.037
Optimal tuning (POTE): ~9/8 = 1\5, ~5/4 = 391.037


Optimal GPV sequence: {{Val list| 5, 10, 15, 25e, 40bef }}
Optimal GPV sequence: {{Val list| 5, 10, 15, 25e, 40bef }}
Line 69: Line 69:
Mapping: [{{val| 5 8 0 14 -6 }}, {{val| 0 0 1 0 2 }}]
Mapping: [{{val| 5 8 0 14 -6 }}, {{val| 0 0 1 0 2 }}]


POTE generator: ~5/4 = 398.070
Optimal tuning (POTE): ~9/8 = 1\5, ~5/4 = 398.070


Optimal GPV sequence: {{Val list| 5e, 10e, 15 }}
Optimal GPV sequence: {{Val list| 5e, 10e, 15 }}
Line 82: Line 82:
Mapping: [{{val| 5 8 0 14 -6 7 }}, {{val| 0 0 1 0 2 1 }}]
Mapping: [{{val| 5 8 0 14 -6 7 }}, {{val| 0 0 1 0 2 1 }}]


POTE generator: ~5/4 = 396.812
Optimal tuning (POTE): ~9/8 = 1\5, ~5/4 = 396.812


Optimal GPV sequence: {{Val list| 5e, 10e, 15 }}
Optimal GPV sequence: {{Val list| 5e, 10e, 15 }}
Line 95: Line 95:
Mapping: [{{val| 5 8 0 14 6 }}, {{val| 0 0 1 0 1 }}]
Mapping: [{{val| 5 8 0 14 6 }}, {{val| 0 0 1 0 1 }}]


POTE generator: ~5/4 = 374.763
Optimal tuning (POTE): ~9/8 = 1\5, ~5/4 = 374.763


Optimal GPV sequence: {{Val list| 5e, 10 }}
Optimal GPV sequence: {{Val list| 5e, 10 }}
Line 102: Line 102:


== Blackweed ==
== Blackweed ==
Blackweed is so named because the 20EDO tuning has 4\20 as the period and 420¢ as the generator.
Blackweed is a variant of blackwood as it tempers out 256/243 alike but in the 2.3.11/7 [[subgroup]]. 20edo is close to the optimum, which has 4\20 as the period and 420¢ as the generator.


Subgroup: 2.3.11/7
[[Subgroup]]: 2.3.11/7


[[Comma list]]: 256/243
[[Comma list]]: {{monzo| 8 -5 }} = 256/243


[[Mapping]]: [{{val| 5 8 0 }}, {{val| 0 0 1 }}]  
[[Sval]] [[mapping]]: [{{val| 5 8 0 }}, {{val| 0 0 1 }}]  


Mapping generators: ~9/8, ~11/7
Sval mapping generators: ~9/8, ~11/7


[[POTE generator]]: ~14/11 = 413.7785
[[Optimal tuning]] ([[subgroup POTE]]): ~11/7 = 786.2215


{{Val list|legend=1| 15, 20, 35b }}
{{Val list|legend=1| 15, 20, 35b }}

Revision as of 10:33, 21 December 2022

This limmic temperaments page collects various temperaments tempering out the Pythagorean limma, 256/243. As a consequence, 3/2 is always represented by 3\5, 720 cents assuming pure octaves. While quite sharp, this is close enough to a just fifth to serve as a fifth, and some people are fond of it.

Blacksmith

5-limit (blackwood)

Subgroup: 2.3.5

Comma list: 256/243

Mapping: [5 8 0], 0 0 1]]

Mapping generators: ~9/8, ~5

Optimal tuning (POTE): ~9/8 = 1\5, ~5/4 = 399.594

Template:Val list

Badness: 0.063760

7-limit

blacksmith10.jpg
Lattice of blacksmith

Subgroup: 2.3.5.7

Comma list: 28/27, 49/48

Mapping: [5 8 0 14], 0 0 1 0]]

Mapping generators: ~7/6, ~5

Wedgie⟨⟨ 0 5 0 8 0 -14 ]]

Optimal tuning (POTE): ~9/8 = 1\5, ~5/4 = 392.767

Template:Val list

Badness: 0.025640

11-limit

Subgroup: 2.3.5.7.11

Comma list: 28/27, 49/48, 55/54

Mapping: [5 8 0 14 29], 0 0 1 0 -1]]

Optimal tuning (POTE): ~9/8 = 1\5, ~5/4 = 394.948

Optimal GPV sequence: Template:Val list

Badness: 0.024641

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 28/27, 40/39, 49/48, 55/54

Mapping: [5 8 0 14 29 7], 0 0 1 0 -1 1]]

Optimal tuning (POTE): ~9/8 = 1\5, ~5/4 = 391.037

Optimal GPV sequence: Template:Val list

Badness: 0.020498

Farrier

Subgroup: 2.3.5.7.11

Comma list: 28/27, 49/48, 77/75

Mapping: [5 8 0 14 -6], 0 0 1 0 2]]

Optimal tuning (POTE): ~9/8 = 1\5, ~5/4 = 398.070

Optimal GPV sequence: Template:Val list

Badness: 0.029200

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 28/27, 40/39, 49/48, 66/65

Mapping: [5 8 0 14 -6 7], 0 0 1 0 2 1]]

Optimal tuning (POTE): ~9/8 = 1\5, ~5/4 = 396.812

Optimal GPV sequence: Template:Val list

Badness: 0.022325

Ferrum

Subgroup: 2.3.5.7.11

Comma list: 28/27, 35/33, 49/48

Mapping: [5 8 0 14 6], 0 0 1 0 1]]

Optimal tuning (POTE): ~9/8 = 1\5, ~5/4 = 374.763

Optimal GPV sequence: Template:Val list

Badness: 0.030883

Blackweed

Blackweed is a variant of blackwood as it tempers out 256/243 alike but in the 2.3.11/7 subgroup. 20edo is close to the optimum, which has 4\20 as the period and 420¢ as the generator.

Subgroup: 2.3.11/7

Comma list: [8 -5 = 256/243

Sval mapping: [5 8 0], 0 0 1]]

Sval mapping generators: ~9/8, ~11/7

Optimal tuning (subgroup POTE): ~11/7 = 786.2215

Template:Val list