Hemimage temperaments: Difference between revisions
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
* ''[[Marfifths]]'', {10976/10935, 15625/15552} → [[Kleismic family #Marfifths|Kleismic family]] | * ''[[Marfifths]]'', {10976/10935, 15625/15552} → [[Kleismic family #Marfifths|Kleismic family]] | ||
* ''[[Yarman I]]'', {10976/10935, 244140625/243045684} → [[Turkish maqam music temperaments #Yarman I|Turkish maqam music temperaments]] | * ''[[Yarman I]]'', {10976/10935, 244140625/243045684} → [[Turkish maqam music temperaments #Yarman I|Turkish maqam music temperaments]] | ||
== Chromat == | == Chromat == | ||
Line 80: | Line 24: | ||
{{Multival|legend=1| 15 39 48 27 34 2 }} | {{Multival|legend=1| 15 39 48 27 34 2 }} | ||
Mapping generators: ~63/50, ~28/27 | |||
[[POTE generator]]: ~28/27 = 60.528 | [[POTE generator]]: ~28/27 = 60.528 | ||
Line 124: | Line 70: | ||
Optimal GPV sequence: {{Val list| 99ef, 159, 258, 417dg }} | Optimal GPV sequence: {{Val list| 99ef, 159, 258, 417dg }} | ||
Badness: 0. | Badness: 0.031678 | ||
==== | ==== Catachrome ==== | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Line 152: | Line 98: | ||
Badness: 0.030218 | Badness: 0.030218 | ||
== | ==== Chromic ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 196/195, 352/351, 729/728, 1875/1859 | |||
[ | Mapping: [{{val| 3 4 5 6 6 9 }}, {{val| 0 5 13 16 29 14 }}] | ||
POTE generator: ~27/26 = 60.456 | |||
{{ | Optimal GPV sequence: {{Val list| 60e, 99ef, 159f, 258ff }} | ||
Badness: 0.049857 | |||
===== 17-limit ===== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 170/169, 196/195, 352/351, 375/374, 595/594 | |||
Mapping: [{{val| 3 4 5 6 6 9 10 }}, {{val| 0 5 13 16 29 14 15 }}] | |||
POTE generator: ~27/26 = 60.459 | |||
Optimal GPV sequence: {{Val list| 60e, 99ef, 159f, 258ff }} | |||
Badness: 0.031043 | |||
== Bisupermajor == | |||
{{see also| Very high accuracy temperaments #Kwazy }} | |||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 10976/10935, 65625/65536 | |||
[[Mapping]]: [{{val| 2 1 6 1 }}, {{val| 0 8 -5 17 }}] | |||
{{Multival|legend=1| 16 -10 34 -53 9 107 }} | |||
POTE generator: ~ | [[POTE generator]]: ~192/175 = 162.806 | ||
{{Val list|legend=1| 22, 74d, 96d, 118, 140, 258, 398, 656d }} | |||
Badness: 0. | [[Badness]]: 0.065492 | ||
== | === 11-limit === | ||
Subgroup: 2.3.5.7 | Subgroup: 2.3.5.7.11 | ||
Comma list: 385/384, 3388/3375, 9801/9800 | |||
Mapping: [{{val| 2 1 6 1 8 }}, {{val| 0 8 -5 17 -4 }}] | |||
POTE generators: ~11/10 = 162.773 | |||
Optimal GPV sequence: {{Val list| 22, 74d, 96d, 118, 258e, 376de }} | |||
Badness: 0.032080 | |||
== Commatic == | |||
The commatic temperament has a period of half octave and a generator of 20.4 cents. It is so named because the generator is a small interval ("commatic") which represents 81/80, 99/98, and 100/99 all tempered together. | |||
Subgroup: 2.3.5.7 | |||
Subgroup: 2.3.5.7 | |||
Comma list: | [[Comma list]]: 10976/10935, 50421/50000 | ||
Mapping: [{{val| | [[Mapping]]: [{{val| 2 3 4 5 }}, {{val| 0 5 19 18 }}] | ||
{{Multival|legend=1| 10 38 36 37 29 -23 }} | |||
[[POTE generator]]: ~81/80 = 20.377 | |||
{{Val list|legend=1| 58, 118, 294, 412d, 530d }} | |||
[[Badness]]: 0.084317 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 441/440, 3388/3375, 8019/8000 | |||
Mapping: [{{val| 2 3 4 5 6 }}, {{val| 0 5 19 18 27 }}] | |||
POTE generator: ~81/80 = 20.390 | |||
Optimal GPV sequence: {{Val list| 58, 118, 294, 412d }} | |||
Badness: 0.030461 | |||
Subgroup: 2.3.5.7 | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 196/195, 352/351, 729/728, 1001/1000 | |||
Mapping: [{{val| 2 3 4 5 6 7 }}, {{val| 0 5 19 18 27 12 }}] | |||
POTE generator: ~66/65 = 20.427 | |||
Optimal GPV sequence: {{Val list| 58, 118, 176f }} | |||
Badness: 0.026336 | |||
=== 17-limit === | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 170/169, 196/195, 289/288, 352/351, 561/560 | |||
Mapping: [{{val| 2 3 4 5 6 7 8 }}, {{val| 0 5 19 18 27 12 5 }}] | |||
POTE generator: ~66/65 = 20.378 | |||
Optimal GPV sequence: {{Val list| 58, 118, 294ffg, 412dffgg }} | |||
Badness: 0.022396 | |||
Badness: 0. | |||
== Cotoneum == | == Cotoneum == | ||
Line 336: | Line 280: | ||
Badness: 0.021811 | Badness: 0.021811 | ||
== Degrees == | |||
Degrees temperament has a period of 1/20 octave and tempers out the hemimage (10976/10935) and the dimcomp (390625/388962). In this temperament, one period equals ~28/27, two equals ~15/14, three equals ~10/9, five equals ~25/21, six equals ~16/13, seven equals ~14/11, nine equals ~15/11, and ten equals ~99/70. | |||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 10976/10935, 390625/388962 | |||
[[Mapping]]: [{{val| 20 0 -17 -39 }}, {{val| 0 1 2 3 }}] | |||
{{Multival|legend=1| 20 40 60 17 39 27 }} | |||
[[POTE generator]]: ~3/2 = 703.015 | |||
{{Val list|legend=1| 60, 80, 140, 640b, 780b, 920b }} | |||
[[Badness]]: 0.106471 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 1331/1323, 1375/1372, 2200/2187 | |||
Mapping: [{{val| 20 0 -17 -39 -26 }}, {{val| 0 1 2 3 3 }}] | |||
POTE generator: ~3/2 = 703.231 | |||
Optimal GPV sequence: {{Val list| 60e, 80, 140, 360, 500be, 860bde }} | |||
Badness: 0.046770 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 325/324, 352/351, 1001/1000, 1331/1323 | |||
Mapping: [{{val| 20 0 -17 -39 -26 74 }}, {{val| 0 1 2 3 3 0 }}] | |||
POTE generator: ~3/2 = 703.080 | |||
Optimal GPV sequence: {{Val list| 60e, 80, 140, 500be, 640be, 780be }} | |||
Badness: 0.032718 | |||
== Squarschmidt == | == Squarschmidt == | ||
Line 379: | Line 366: | ||
Badness: 0.038186 | Badness: 0.038186 | ||
== Subfourth == | |||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 10976/10935, 65536/64827 | |||
[[Mapping]]: [{{val| 1 0 17 4 }}, {{val| 0 4 -37 -3 }}] | |||
{{Multival|legend=1| 4 -37 -3 -68 -16 97 }} | |||
[[POTE generator]]: ~21/16 = 475.991 | |||
{{Val list|legend=1| 58, 121, 179, 300bd, 479bcd }} | |||
[[Badness]]: 0.140722 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 540/539, 896/891, 12005/11979 | |||
Mapping: [{{val| 1 0 17 4 11 }}, {{val| 0 4 -37 -3 -19 }}] | |||
POTE generator: ~21/16 = 475.995 | |||
Optimal GPV sequence: {{Val list| 58, 121, 179e, 300bde }} | |||
Badness: 0.045323 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 352/351, 364/363, 540/539, 676/675 | |||
Mapping: [{{val| 1 0 17 4 11 16 }}, {{val| 0 4 -37 -3 -19 -31 }}] | |||
POTE generator: ~21/16 = 475.996 | |||
Optimal GPV sequence: {{Val list| 58, 121, 179ef, 300bdef }} | |||
Badness: 0.023800 | |||
[[Category:Temperament collections]] | [[Category:Temperament collections]] | ||
[[Category:Hemimage]] | [[Category:Hemimage]] | ||
[[Category:Rank 2]] | [[Category:Rank 2]] |
Revision as of 08:44, 19 March 2022
This is a collection of temperaments tempering out the hemimage comma, [5 -7 -1 3⟩ = 10976/10935. These include commatic, chromat, degrees, subfourth, bisupermajor and cotoneum, considered below, as well as the following discussed elsewhere:
- Quasisuper, {64/63, 2430/2401} → Archytas clan
- Liese, {81/80, 686/675} → Meantone family
- Unicorn, {126/125, 10976/10935} → Unicorn family
- Magic, {225/224, 245/243} → Magic family
- Guiron, {1029/1024, 10976/10935} → Gamelismic clan
- Echidna, {1728/1715, 2048/2025} → Diaschismic family
- Hemififths, {2401/2400, 5120/5103} → Breedsmic temperaments
- Dodecacot, {3125/3087, 10976/10935} → Tetracot family
- Parakleismic, {3136/3125, 4375/4374} → Ragismic microtemperaments
- Pluto, {4000/3969, 10976/10935} → Mirkwai clan
- Hendecatonic, {6144/6125, 10976/10935} → Porwell temperaments
- Marfifths, {10976/10935, 15625/15552} → Kleismic family
- Yarman I, {10976/10935, 244140625/243045684} → Turkish maqam music temperaments
Chromat
The chromat temperament has a period of 1/3 octave and tempers out the hemimage (10976/10935) and the triwellisma (235298/234375). It is also described as an amity extension with third-octave period.
Subgroup: 2.3.5.7
Comma list: 10976/10935, 235298/234375
Mapping: [⟨3 4 5 6], ⟨0 5 13 16]]
Wedgie: ⟨⟨ 15 39 48 27 34 2 ]]
Mapping generators: ~63/50, ~28/27
POTE generator: ~28/27 = 60.528
Badness: 0.057499
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 4375/4356, 10976/10935
Mapping: [⟨3 4 5 6 6], ⟨0 5 13 16 29]]
POTE generator: ~28/27 = 60.430
Optimal GPV sequence: Template:Val list
Badness: 0.050379
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 625/624, 10976/10935
Mapping: [⟨3 4 5 6 6 4], ⟨0 5 13 16 29 47]]
POTE generator: ~28/27 = 60.428
Optimal GPV sequence: Template:Val list
Badness: 0.046006
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 364/363, 375/374, 441/440, 595/594, 3773/3757
Mapping: [⟨3 4 5 6 6 4 10], ⟨0 5 13 16 29 47 15]]
POTE generator: ~28/27 = 60.438
Optimal GPV sequence: Template:Val list
Badness: 0.031678
Catachrome
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 441/440, 1001/1000, 10976/10935
Mapping: [⟨3 4 5 6 6 12], ⟨0 5 13 16 29 -6]]
POTE generator: ~28/27 = 60.378
Optimal GPV sequence: Template:Val list
Badness: 0.043844
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 273/272, 325/324, 375/374, 441/440, 4928/4913
Mapping: [⟨3 4 5 6 6 12 10], ⟨0 5 13 16 29 -6 15]]
POTE generator: ~28/27 = 60.377
Optimal GPV sequence: Template:Val list
Badness: 0.030218
Chromic
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 352/351, 729/728, 1875/1859
Mapping: [⟨3 4 5 6 6 9], ⟨0 5 13 16 29 14]]
POTE generator: ~27/26 = 60.456
Optimal GPV sequence: Template:Val list
Badness: 0.049857
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 170/169, 196/195, 352/351, 375/374, 595/594
Mapping: [⟨3 4 5 6 6 9 10], ⟨0 5 13 16 29 14 15]]
POTE generator: ~27/26 = 60.459
Optimal GPV sequence: Template:Val list
Badness: 0.031043
Bisupermajor
Subgroup: 2.3.5.7
Comma list: 10976/10935, 65625/65536
Mapping: [⟨2 1 6 1], ⟨0 8 -5 17]]
Wedgie: ⟨⟨ 16 -10 34 -53 9 107 ]]
POTE generator: ~192/175 = 162.806
Badness: 0.065492
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 3388/3375, 9801/9800
Mapping: [⟨2 1 6 1 8], ⟨0 8 -5 17 -4]]
POTE generators: ~11/10 = 162.773
Optimal GPV sequence: Template:Val list
Badness: 0.032080
Commatic
The commatic temperament has a period of half octave and a generator of 20.4 cents. It is so named because the generator is a small interval ("commatic") which represents 81/80, 99/98, and 100/99 all tempered together.
Subgroup: 2.3.5.7
Comma list: 10976/10935, 50421/50000
Mapping: [⟨2 3 4 5], ⟨0 5 19 18]]
Wedgie: ⟨⟨ 10 38 36 37 29 -23 ]]
POTE generator: ~81/80 = 20.377
Badness: 0.084317
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 3388/3375, 8019/8000
Mapping: [⟨2 3 4 5 6], ⟨0 5 19 18 27]]
POTE generator: ~81/80 = 20.390
Optimal GPV sequence: Template:Val list
Badness: 0.030461
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 352/351, 729/728, 1001/1000
Mapping: [⟨2 3 4 5 6 7], ⟨0 5 19 18 27 12]]
POTE generator: ~66/65 = 20.427
Optimal GPV sequence: Template:Val list
Badness: 0.026336
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 170/169, 196/195, 289/288, 352/351, 561/560
Mapping: [⟨2 3 4 5 6 7 8], ⟨0 5 19 18 27 12 5]]
POTE generator: ~66/65 = 20.378
Optimal GPV sequence: Template:Val list
Badness: 0.022396
Cotoneum
The cotoneum temperament (41&217, named after the Latin for "quince") tempers out the quince comma, 823543/819200 and the garischisma, 33554432/33480783. This temperament is supported by 41, 176, 217, and 258 EDOs, and can be extended to the 11-, 13-, 17-, and 19-limit by adding 441/440, 364/363, 595/594, and 343/342 to the comma list in this order.
Subgroup: 2.3.5.7
Comma list: 10976/10935, 823543/819200
Mapping: [⟨1 2 -18 -3], ⟨0 -1 49 14]]
Wedgie: ⟨⟨ 1 -49 -14 -80 -25 105 ]]
POTE generator: ~3/2 = 702.317
Badness: 0.105632
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 10976/10935, 16384/16335
Mapping: [⟨1 2 -18 -3 13], ⟨0 -1 49 14 -23]]
POTE generator: ~3/2 = 702.303
Optimal GPV sequence: Template:Val list
Badness: 0.050966
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 3584/3575, 10976/10935
Mapping: [⟨1 2 -18 -3 13 29], ⟨0 -1 49 14 -23 -61]]
POTE generator: ~3/2 = 702.306
Optimal GPV sequence: Template:Val list
Badness: 0.036951
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 364/363, 441/440, 595/594, 3584/3575, 8281/8262
Mapping: [⟨1 2 -18 -3 13 29 41], ⟨0 -1 49 14 -23 -61 -89]]
POTE generator: ~3/2 = 702.307
Optimal GPV sequence: Template:Val list
Badness: 0.029495
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 343/342, 364/363, 441/440, 595/594, 1216/1215, 1729/1728
Mapping: [⟨1 2 -18 -3 13 29 41 -14], ⟨0 -1 49 14 -23 -61 -89 44]]
POTE generator: ~3/2 = 702.308
Optimal GPV sequence: Template:Val list
Badness: 0.021811
Degrees
Degrees temperament has a period of 1/20 octave and tempers out the hemimage (10976/10935) and the dimcomp (390625/388962). In this temperament, one period equals ~28/27, two equals ~15/14, three equals ~10/9, five equals ~25/21, six equals ~16/13, seven equals ~14/11, nine equals ~15/11, and ten equals ~99/70.
Subgroup: 2.3.5.7
Comma list: 10976/10935, 390625/388962
Mapping: [⟨20 0 -17 -39], ⟨0 1 2 3]]
Wedgie: ⟨⟨ 20 40 60 17 39 27 ]]
POTE generator: ~3/2 = 703.015
Badness: 0.106471
11-limit
Subgroup: 2.3.5.7.11
Comma list: 1331/1323, 1375/1372, 2200/2187
Mapping: [⟨20 0 -17 -39 -26], ⟨0 1 2 3 3]]
POTE generator: ~3/2 = 703.231
Optimal GPV sequence: Template:Val list
Badness: 0.046770
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 352/351, 1001/1000, 1331/1323
Mapping: [⟨20 0 -17 -39 -26 74], ⟨0 1 2 3 3 0]]
POTE generator: ~3/2 = 703.080
Optimal GPV sequence: Template:Val list
Badness: 0.032718
Squarschmidt
A generator for the squarschimidt temperament is the fourth root of 5/2, (5/2)1/4, tuned around 396.6 cents. The squarschimidt temperament can be described as 118&239 temperament, tempering out the hemimage comma and quasiorwellisma, 29360128/29296875 in the 7-limit. In the 11-limit, 118&239 tempers out 3025/3024, 5632/5625, and 12005/11979, and the generator represents ~44/35.
Subgroup: 2.3.5
Comma: [61 4 -29⟩
Mapping: [⟨1 -8 1], ⟨0 29 4]]
POTE generator: ~98304/78125 = 396.621
Badness: 0.218314
7-limit
Subgroup: 2.3.5.7
Comma list: 10976/10935, 29360128/29296875
Mapping: [⟨1 -8 1 -20], ⟨0 29 4 69]]
Wedgie: ⟨⟨ 29 4 69 -61 28 149 ]]
POTE generator: ~1125/896 = 396.643
Badness: 0.132821
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 5632/5625, 10976/10935
Mapping: [⟨1 -8 1 -20 -21], ⟨0 29 4 69 74]]
POTE generator: ~44/35 = 396.644
Optimal GPV sequence: Template:Val list
Badness: 0.038186
Subfourth
Subgroup: 2.3.5.7
Comma list: 10976/10935, 65536/64827
Mapping: [⟨1 0 17 4], ⟨0 4 -37 -3]]
Wedgie: ⟨⟨ 4 -37 -3 -68 -16 97 ]]
POTE generator: ~21/16 = 475.991
Badness: 0.140722
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 896/891, 12005/11979
Mapping: [⟨1 0 17 4 11], ⟨0 4 -37 -3 -19]]
POTE generator: ~21/16 = 475.995
Optimal GPV sequence: Template:Val list
Badness: 0.045323
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 364/363, 540/539, 676/675
Mapping: [⟨1 0 17 4 11 16], ⟨0 4 -37 -3 -19 -31]]
POTE generator: ~21/16 = 475.996
Optimal GPV sequence: Template:Val list
Badness: 0.023800