Decic: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
mNo edit summary
Xenllium (talk | contribs)
No edit summary
Line 48: Line 48:
* 13-limit: 0.036880
* 13-limit: 0.036880
* 17-limit: 0.025064
* 17-limit: 0.025064
</div></div>
== Interval chains ==
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">'''Intervals of decic'''</div>
<div class="mw-collapsible-content">
{| class="wikitable"
|-
! colspan="2" | Generator
! | -3
! | -2
! | -1
! | 0
! | 1
! | 2
! | 3
|-
! rowspan="2" | Period 0
! | Cents*
| | 1131.256
| | 1154.171
| | 1177.085
| | 0.000
| | 22.915
| | 45.829
| | 68.744
|-
! | Ratios
| |
| |
| |
| | 1/1
| |
| | 40/39
| | 28/27, 25/24
|-
! rowspan="2" | Period 1
! | Cents*
| | 51.256
| | 74.171
| | 97.085
| | 120.000
| | 142.915
| | 165.829
| | 188.744
|-
! | Ratios
| | 36/35, 33/32
| | 22/21, 21/20
| | 18/17, 17/16
| | 16/15, 15/14, 14/13
| | 13/12, 12/11
| |
| | 10/9
|-
! rowspan="2" | Period 2
! | Cents*
| | 171.256
| | 194.171
| | 217.085
| | 240.000
| | 262.915
| | 285.829
| | 308.744
|-
! | Ratios
| | 11/10
| | 9/8
| | 17/15
| | 8/7, 15/13
| | 7/6
| | 20/17, 13/11
| |
|-
! rowspan="2" | Period 3
! | Cents*
| | 291.256
| | 314.171
| | 337.085
| | 360.000
| | 382.915
| | 405.829
| | 428.744
|-
! | Ratios
| |
| | 6/5
| | 17/14
| | 11/9, 16/13, 21/17
| | 26/21, 5/4
| | 14/11
| |
|-
! rowspan="2" | Period 4
! | Cents*
| | 411.256
| | 434.171
| | 457.085
| | 480.000
| | 502.915
| | 525.829
| | 548.744
|-
! | Ratios
| |
| | 9/7
| | 22/17, 13/10, 17/13, 21/16
| |
| | 4/3
| | 15/11
| |
|-
! rowspan="2" | Period 5
! | Cents*
| | 531.256
| | 554.171
| | 577.085
| | 600.000
| | 622.915
| | 645.829
| | 668.744
|-
! | Ratios
| |
| | 11/8, 18/13
| | 7/5
| | 24/17, 17/12
| | 10/7
| | 13/9, 16/11
| |
|}
<nowiki>*</nowiki> in 17-limit POTE tuning
</div></div>
</div></div>



Revision as of 13:11, 7 February 2022

Decic is a temperament for the 7, 11, 13, and 17 prime limits. It is a member of marvel temperaments, cloudy clan, and linus temperaments. It has a period of 1/10 octave and tempers out 225/224 and 16807/16384. The fifth of decic in size is a meantone fifth, but four of them are not used to reach the 5th harmonic. Instead, 14/13, 15/14 and 16/15 are equated to 1/10 of an octave, and from this it derives its name. Not only the meantone fifth (flat 3/2) or fourth (sharp 4/3), but also the magic major third (flat 5/4) can be used as a generator.

Temperament data

Decic temperament (10&50)

Subgroup: 2.3.5.7.11.13.17

Comma list: 105/104, 144/143, 170/169, 196/195, 221/220

Mapping: [10 16 23 28 35 37 41], 0 1 -1 0 2 0 1]]

POTE generators:

  • 7-limit: ~3/2 = 698.69596
  • 11-limit: ~3/2 = 696.79119
  • 13-limit: ~3/2 = 696.99342
  • 17-limit: ~3/2 = 697.08527

TOP generators:

  • 7-limit: ~15/14 = 120.18411, ~3/2 = 699.76795
  • 11-limit: ~15/14 = 120.14165, ~3/2 = 697.61366
  • 13-limit: ~14/13 = 120.11775, ~3/2 = 697.67733
  • 17-limit: ~14/13 = 120.12744, ~3/2 = 697.82559

Diamond monotone ranges:

  • 7-odd-limit: ~3/2 = [680.00000, 720.00000] (34\60 to 6\10)
  • 9-odd-limit: ~3/2 = [696.00000, 720.00000] (29\50 to 6\10)
  • 11, 13, 15, and 17-odd-limit: ~3/2 = [696.00000, 700.00000] (29\50 to 35\60)

Diamond tradeoff ranges:

  • 7 and 9-odd-limit: ~3/2 = [693.12909, 702.51219]
  • 11, 13, and 15-odd-limit: ~3/2 = [689.36294, 702.51219]
  • 17-odd-limit: ~3/2 = [689.36294, 704.95541]

Diamond monotone and tradeoff ranges:

  • 7-odd-limit: ~3/2 = [693.12909, 702.51219]
  • 9-odd-limit: ~3/2 = [696.00000, 702.51219]
  • 11, 13, 15, and 17-odd-limit: ~3/2 = [696.00000, 700.00000]

Optimal GPV sequences:

Badness:

  • 7-limit: 0.089135
  • 11-limit: 0.063900
  • 13-limit: 0.036880
  • 17-limit: 0.025064

Interval chains

Intervals of decic
Generator -3 -2 -1 0 1 2 3
Period 0 Cents* 1131.256 1154.171 1177.085 0.000 22.915 45.829 68.744
Ratios 1/1 40/39 28/27, 25/24
Period 1 Cents* 51.256 74.171 97.085 120.000 142.915 165.829 188.744
Ratios 36/35, 33/32 22/21, 21/20 18/17, 17/16 16/15, 15/14, 14/13 13/12, 12/11 10/9
Period 2 Cents* 171.256 194.171 217.085 240.000 262.915 285.829 308.744
Ratios 11/10 9/8 17/15 8/7, 15/13 7/6 20/17, 13/11
Period 3 Cents* 291.256 314.171 337.085 360.000 382.915 405.829 428.744
Ratios 6/5 17/14 11/9, 16/13, 21/17 26/21, 5/4 14/11
Period 4 Cents* 411.256 434.171 457.085 480.000 502.915 525.829 548.744
Ratios 9/7 22/17, 13/10, 17/13, 21/16 4/3 15/11
Period 5 Cents* 531.256 554.171 577.085 600.000 622.915 645.829 668.744
Ratios 11/8, 18/13 7/5 24/17, 17/12 10/7 13/9, 16/11

* in 17-limit POTE tuning

Scales

Template:IoT