157edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+infobox, +links to rank-2 temps
Line 1: Line 1:
The '''157 equal divisions of the octave''' ('''157edo'''), or the '''157(-tone) equal temperament''' ('''157tet''', '''157et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 157 parts of 7.6433 [[cent]]s each.  
{{Infobox ET
| Prime factorization = 157 (prime)
| Step size = 7.64331¢
| Fifth = 92\157 (703.18¢)
| Major 2nd = 27\157 (206¢)
| Minor 2nd = 11\157 (84¢)
| Augmented 1sn = 16\157  (122¢)
}}
The '''157 equal divisions of the octave''' ('''157edo'''), or the '''157(-tone) equal temperament''' ('''157tet''', '''157et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 157 parts of 7.64 [[cent]]s each.  


== Theory ==
== Theory ==
157et tempers out 78732/78125 ([[sensipent comma]]) and 137438953472/134521003125 in the 5-limit; [[2401/2400]], [[5120/5103]], and 110592/109375 in the 7-limit (supporting the [[hemififths]] and the [[catafourth]]). Using the [[patent val]], it tempers out [[176/175]], 1331/1323, 3773/3750 and 8019/8000 in the 11-limit; [[351/350]], [[352/351]], [[847/845]], 1573/1568, and 2197/2187 in the 13-limit.
157et tempers out 78732/78125 ([[sensipent comma]]) and {{monzo| 37 -16 -5 }} (quinticosiennic comma) in the 5-limit; [[2401/2400]], [[5120/5103]], and 110592/109375 in the 7-limit (supporting the [[hemififths]] and the [[catafourth]]). Using the [[patent val]], it tempers out [[176/175]], 1331/1323, 3773/3750 and 8019/8000 in the 11-limit; [[351/350]], [[352/351]], [[847/845]], 1573/1568, and 2197/2187 in the 13-limit.


157edo is the 37th [[prime EDO]].  
157edo is the 37th [[prime EDO]].  
Line 78: Line 86:
! Associated<br>ratio
! Associated<br>ratio
! Temperament
! Temperament
|-
| 1
| 13\157
| 99.36
| 18/17
| [[Quinticosiennic]]
|-
| 1
| 23\157
| 175.80
| 72/65
| [[Quadrafifths]]
|-
|-
| 1
| 1
Line 89: Line 109:
| 428.03
| 428.03
| 2800/2187
| 2800/2187
| [[Osiris]]
| [[Geb]] / [[osiris]]
|-
|-
| 1
| 1

Revision as of 19:51, 16 September 2021

← 156edo 157edo 158edo →
Prime factorization 157 (prime)
Step size 7.64331 ¢ 
Fifth 92\157 (703.185 ¢)
Semitones (A1:m2) 16:11 (122.3 ¢ : 84.08 ¢)
Consistency limit 9
Distinct consistency limit 9

The 157 equal divisions of the octave (157edo), or the 157(-tone) equal temperament (157tet, 157et) when viewed from a regular temperament perspective, is the equal division of the octave into 157 parts of 7.64 cents each.

Theory

157et tempers out 78732/78125 (sensipent comma) and [37 -16 -5 (quinticosiennic comma) in the 5-limit; 2401/2400, 5120/5103, and 110592/109375 in the 7-limit (supporting the hemififths and the catafourth). Using the patent val, it tempers out 176/175, 1331/1323, 3773/3750 and 8019/8000 in the 11-limit; 351/350, 352/351, 847/845, 1573/1568, and 2197/2187 in the 13-limit.

157edo is the 37th prime EDO.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [249 -157 [157 249]] -0.388 0.388 5.08
2.3.5 78732/78125, 37 -16 -5] [157 249 365]] -0.760 0.614 8.04
2.3.5.7 2401/2400, 5120/5103, 78732/78125 [157 249 365 441]] -0.737 0.533 6.98
2.3.5.7.11 176/175, 1331/1323, 2401/2400, 5120/5103 [157 249 365 441 543]] -0.532 0.629 8.24
2.3.5.7.11.13 176/175, 351/350, 847/845, 1331/1323, 2197/2187 [157 249 365 441 543 581]] -0.454 0.600 7.86
2.3.5.7.11.13.17 176/175, 256/255, 351/350, 442/441, 715/714, 2197/2187 [157 249 365 441 543 581 642]] -0.461 0.556 7.28
2.3.5.7.11.13.17.19 176/175, 256/255, 286/285, 351/350, 361/360, 442/441, 476/475 [157 249 365 441 543 581 642 667]] -0.420 0.531 6.95

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperament
1 13\157 99.36 18/17 Quinticosiennic
1 23\157 175.80 72/65 Quadrafifths
1 46\157 351.59 49/40 Hemififths
1 56\157 428.03 2800/2187 Geb / osiris
1 58\157 443.31 162/125 Sensipent
1 64\157 489.17 250/189 Catafourth