157edo: Difference between revisions
Jump to navigation
Jump to search
+intro and prime harmonics table |
+RTT table |
||
Line 8: | Line 8: | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Primes in edo|157}} | {{Primes in edo|157}} | ||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | Subgroup | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| 249 -157 }} | |||
| [{{val| 157 249 }}] | |||
| -0.388 | |||
| 0.388 | |||
| 5.08 | |||
|- | |||
| 2.3.5 | |||
| 78732/78125, {{val| 37 -16 -5 }} | |||
| [{{val| 157 249 365 }}] | |||
| -0.760 | |||
| 0.614 | |||
| 8.04 | |||
|- | |||
| 2.3.5.7 | |||
| 2401/2400, 5120/5103, 78732/78125 | |||
| [{{val| 157 249 365 441 }}] | |||
| -0.737 | |||
| 0.533 | |||
| 6.98 | |||
|- | |||
| 2.3.5.7.11 | |||
| 176/175, 1331/1323, 2401/2400, 5120/5103 | |||
| [{{val| 157 249 365 441 543 }}] | |||
| -0.532 | |||
| 0.629 | |||
| 8.24 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 176/175, 351/350, 847/845, 1331/1323, 2197/2187 | |||
| [{{val| 157 249 365 441 543 581 }}] | |||
| -0.454 | |||
| 0.600 | |||
| 7.86 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 176/175, 256/255, 351/350, 442/441, 715/714, 2197/2187 | |||
| [{{val| 157 249 365 441 543 581 642 }}] | |||
| -0.461 | |||
| 0.556 | |||
| 7.28 | |||
|- | |||
| 2.3.5.7.11.13.17.19 | |||
| 176/175, 256/255, 286/285, 351/350, 361/360, 442/441, 476/475 | |||
| [{{val| 157 249 365 441 543 581 642 667 }}] | |||
| -0.420 | |||
| 0.531 | |||
| 6.95 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all right-3 left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per octave | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperament | |||
|- | |||
| 1 | |||
| 46\157 | |||
| 351.59 | |||
| 49/40 | |||
| [[Hemififths]] | |||
|- | |||
| 1 | |||
| 56\157 | |||
| 428.03 | |||
| 2800/2187 | |||
| [[Osiris]] | |||
|- | |||
| 1 | |||
| 58\157 | |||
| 443.31 | |||
| 49/40 | |||
| [[Sensipent]] | |||
|- | |||
| 1 | |||
| 64\157 | |||
| 489.17 | |||
| 250/189 | |||
| [[Catafourth]] | |||
|} | |||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] | ||
[[Category:Prime EDO]] | [[Category:Prime EDO]] |
Revision as of 08:35, 16 July 2021
The 157 equal divisions of the octave (157edo), or the 157(-tone) equal temperament (157tet, 157et) when viewed from a regular temperament perspective, is the equal division of the octave into 157 parts of 7.6433 cents each.
Theory
157et tempers out 78732/78125 (sensipent comma) and 137438953472/134521003125 in the 5-limit; 2401/2400, 5120/5103, and 110592/109375 in the 7-limit (supporting the hemififths and the catafourth). Using the patent val, it tempers out 176/175, 1331/1323, 3773/3750 and 8019/8000 in the 11-limit; 351/350, 352/351, 847/845, 1573/1568, and 2197/2187 in the 13-limit.
157edo is the 37th prime EDO.
Prime harmonics
Script error: No such module "primes_in_edo".
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [249 -157⟩ | [⟨157 249]] | -0.388 | 0.388 | 5.08 |
2.3.5 | 78732/78125, ⟨37 -16 -5] | [⟨157 249 365]] | -0.760 | 0.614 | 8.04 |
2.3.5.7 | 2401/2400, 5120/5103, 78732/78125 | [⟨157 249 365 441]] | -0.737 | 0.533 | 6.98 |
2.3.5.7.11 | 176/175, 1331/1323, 2401/2400, 5120/5103 | [⟨157 249 365 441 543]] | -0.532 | 0.629 | 8.24 |
2.3.5.7.11.13 | 176/175, 351/350, 847/845, 1331/1323, 2197/2187 | [⟨157 249 365 441 543 581]] | -0.454 | 0.600 | 7.86 |
2.3.5.7.11.13.17 | 176/175, 256/255, 351/350, 442/441, 715/714, 2197/2187 | [⟨157 249 365 441 543 581 642]] | -0.461 | 0.556 | 7.28 |
2.3.5.7.11.13.17.19 | 176/175, 256/255, 286/285, 351/350, 361/360, 442/441, 476/475 | [⟨157 249 365 441 543 581 642 667]] | -0.420 | 0.531 | 6.95 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperament |
---|---|---|---|---|
1 | 46\157 | 351.59 | 49/40 | Hemififths |
1 | 56\157 | 428.03 | 2800/2187 | Osiris |
1 | 58\157 | 443.31 | 49/40 | Sensipent |
1 | 64\157 | 489.17 | 250/189 | Catafourth |