1889edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
m +interval chapter
Line 19: Line 19:
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning error
|-
|-
Line 26: Line 26:
|-
|-
| 2.3
| 2.3
| {{monzo|2994 -1889}}
| {{Monzo| 2994 -1889 }}
| {{mapping|1889 2994}}
| {{Mapping| 1889 2994 }}
| −0.0012
| −0.0012
| 0.0012
| 0.0012
Line 33: Line 33:
|-
|-
| 2.3.5
| 2.3.5
| {{monzo|54 -37 2}}, {{monzo|-66 -36 53}}
| {{Monzo| 54 -37 2 }}, {{monzo| -66 -36 53 }}
| {{mapping|1889 2994 4386}}
| {{Mapping| 1889 2994 4386 }}
| +0.0104
| +0.0104
| 0.0163
| 0.0163
Line 40: Line 40:
|-
|-
| 2.3.5.7
| 2.3.5.7
| 4375/4374, 3955078125/3954653486, {{monzo|-57 16 10 3}}
| 4375/4374, {{monzo| -1 4 11 -1 }}, {{monzo| -57 16 10 3 }}
| {{mapping|1889 2994 4386 5303}}
| {{Mapping| 1889 2994 4386 5303 }}
| +0.0131
| +0.0131
| 0.0149
| 0.0149
Line 47: Line 47:
|-
|-
| 2.3.5.7.11
| 2.3.5.7.11
| 4375/4374, 151263/151250, 820125/819896, 1879453125/1879048192
| 4375/4374, 151263/151250, 820125/819896, {{monzo| -28 7 7 -1 1 }}
| {{mapping|1889 2994 4386 5303 6535}}
| {{Mapping| 1889 2994 4386 5303 6535 }}
| +0.0055
| +0.0055
| 0.0201
| 0.0201
Line 54: Line 54:
|-
|-
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 4375/4374, 4225/4224, 6656/6655, 4100625/4100096, 151263/151250
| 4225/4224, 4375/4374, 6656/6655, 151263/151250, 4100625/4100096
| {{mapping|1889 2994 4386 5303 6535 6990}}
| {{Mapping| 1889 2994 4386 5303 6535 6990 }}
| +0.0084
| +0.0084
| 0.0194
| 0.0194
Line 61: Line 61:
|-
|-
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 4375/4374, 12376/12375, 4225/4224, 14400/14399, 14875/14872, 194481/194480
| 4225/4224, 4375/4374, 6656/6655, 12376/12375, 14875/14872, 194481/194480
| {{mapping|1889 2994 4386 5303 6535 6990 7721}}
| {{Mapping| 1889 2994 4386 5303 6535 6990 7721 }}
| +0.0120
| +0.0120
| 0.0200
| 0.0200
Line 68: Line 68:
|-
|-
| 2.3.5.7.11.13.17.19
| 2.3.5.7.11.13.17.19
| 4375/4374, 12376/12375, 5985/5984, 4225/4224, 14400/14399, 6175/6174, 61965/61952
| 4225/4224, 4375/4374, 5985/5984, 6175/6174, 6656/6655, 12376/12375, 61965/61952
| {{mapping|1889 2994 4386 5303 6535 6990 7721 8024}}
| {{Mapping| 1889 2994 4386 5303 6535 6990 7721 8024 }}
| +0.0167
| +0.0167
| 0.0226
| 0.0226
Line 79: Line 79:
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
|-
! Periods<br />per 8ve
! Periods<br>per 8ve
! Generator*
! Generator*
! Cents*
! Cents*
! Associated<br />ratio*
! Associated<br>ratio*
! Temperaments
! Temperaments
|-
|-
Line 88: Line 88:
| 392\1889
| 392\1889
| 249.021
| 249.021
| {{monzo|-26 18 1}}
| {{Monzo| -26 18 1 }}
| [[Monzismic]]
| [[Monzismic]]
|-
|-
Line 97: Line 97:
| [[Semidimi]]
| [[Semidimi]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct


== Music ==
== Music ==

Revision as of 15:54, 2 March 2025

← 1888edo 1889edo 1890edo →
Prime factorization 1889 (prime)
Step size 0.635257 ¢ 
Fifth 1105\1889 (701.959 ¢)
Semitones (A1:m2) 179:142 (113.7 ¢ : 90.21 ¢)
Consistency limit 27
Distinct consistency limit 27

1889 equal divisions of the octave (abbreviated 1889edo or 1889ed2), also called 1889-tone equal temperament (1889tet) or 1889 equal temperament (1889et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1889 equal parts of about 0.635 ¢ each. Each step represents a frequency ratio of 21/1889, or the 1889th root of 2.

Theory

1889edo is strong in the 23-limit, though 1578, which among other things has a lower 23-limit relative error, rather puts it in the shade. It is distinctly consistent through the 27-odd-limit, but not, unlike 1578, to the 29-odd-limit. Even so, it should be noted that it supplies the optimal patent val for the 7-limit monzismic temperament.

Prime harmonics

Approximation of prime harmonics in 1889edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.004 -0.078 -0.059 +0.085 -0.083 -0.138 -0.213 -0.005 +0.174 -0.303
Relative (%) +0.0 +0.6 -12.2 -9.3 +13.4 -13.1 -21.7 -33.5 -0.9 +27.4 -47.7
Steps
(reduced)
1889
(0)
2994
(1105)
4386
(608)
5303
(1525)
6535
(868)
6990
(1323)
7721
(165)
8024
(468)
8545
(989)
9177
(1621)
9358
(1802)

Subsets and supersets

1889edo is the 290th prime edo.

Intervals

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [2994 -1889 [1889 2994]] −0.0012 0.0012 0.19
2.3.5 [54 -37 2, [-66 -36 53 [1889 2994 4386]] +0.0104 0.0163 2.57
2.3.5.7 4375/4374, [-1 4 11 -1, [-57 16 10 3 [1889 2994 4386 5303]] +0.0131 0.0149 2.35
2.3.5.7.11 4375/4374, 151263/151250, 820125/819896, [-28 7 7 -1 1 [1889 2994 4386 5303 6535]] +0.0055 0.0201 3.16
2.3.5.7.11.13 4225/4224, 4375/4374, 6656/6655, 151263/151250, 4100625/4100096 [1889 2994 4386 5303 6535 6990]] +0.0084 0.0194 3.05
2.3.5.7.11.13.17 4225/4224, 4375/4374, 6656/6655, 12376/12375, 14875/14872, 194481/194480 [1889 2994 4386 5303 6535 6990 7721]] +0.0120 0.0200 3.15
2.3.5.7.11.13.17.19 4225/4224, 4375/4374, 5985/5984, 6175/6174, 6656/6655, 12376/12375, 61965/61952 [1889 2994 4386 5303 6535 6990 7721 8024]] +0.0167 0.0226 3.56

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 392\1889 249.021 [-26 18 1 Monzismic
1 707\1889 449.127 35/27 Semidimi

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Music

Francium