359edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
m Partial undo
ArrowHead294 (talk | contribs)
mNo edit summary
Line 5: Line 5:
359edo contains a very close approximation of the pure [[3/2]] fifth of 701.955 cents, with the 210\359 step of 701.94986 cents. In the 5-limit it tempers out the [[würschmidt comma]] and the [[counterschisma]]; in the 7-limit [[2401/2400]] and [[3136/3125]], supporting [[hemiwürschmidt]]; in the 11-limit, [[8019/8000]], providing the [[optimal patent val]] for 11-limit [[hera]].  
359edo contains a very close approximation of the pure [[3/2]] fifth of 701.955 cents, with the 210\359 step of 701.94986 cents. In the 5-limit it tempers out the [[würschmidt comma]] and the [[counterschisma]]; in the 7-limit [[2401/2400]] and [[3136/3125]], supporting [[hemiwürschmidt]]; in the 11-limit, [[8019/8000]], providing the [[optimal patent val]] for 11-limit [[hera]].  


359edo [[support]]s a type of exaggerated Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America{{citation needed}}; the Pythagorean fifth (701.955¢) minus the Pythagorean comma (23.46¢) = 678.495¢; in 359edo this is the step 203\359 of 678.55153¢.
359edo [[support]]s a type of exaggerated Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America{{citation needed}}; the 678.495{{c}} [[262144/177147|Pythagorean diminished sixth]]; in 359edo this is reached using 203 steps, or 678.55153{{c}}.


Pythagorean diatonic scale: 61 61 27 61 61 61 27
Pythagorean diatonic scale: 61 61 27 61 61 61 27
Line 39: Line 39:
| 393216/390625, {{monzo| -69 45 -1 }}
| 393216/390625, {{monzo| -69 45 -1 }}
| {{mapping| 359 569 834 }}
| {{mapping| 359 569 834 }}
| −0.2042
| −0.2042
| 0.2910
| 0.2910
| 8.71
| 8.71
Line 46: Line 46:
| 2401/2400, 3136/3125, {{monzo| -18 24 -5 -3 }}
| 2401/2400, 3136/3125, {{monzo| -18 24 -5 -3 }}
| {{mapping| 359 569 834 1008 }}
| {{mapping| 359 569 834 1008 }}
| −0.2007
| −0.2007
| 0.2521
| 0.2521
| 7.54
| 7.54
Line 53: Line 53:
| 2401/2400, 3136/3125, 8019/8000, 42592/42525
| 2401/2400, 3136/3125, 8019/8000, 42592/42525
| {{mapping| 359 569 834 1008 1242 }}
| {{mapping| 359 569 834 1008 1242 }}
| −0.1729
| −0.1729
| 0.2322
| 0.2322
| 6.95
| 6.95
Line 60: Line 60:
| 729/728, 847/845, 1001/1000, 1716/1715, 3136/3125
| 729/728, 847/845, 1001/1000, 1716/1715, 3136/3125
| {{mapping| 359 569 834 1008 1242 1328 }} (359f)
| {{mapping| 359 569 834 1008 1242 1328 }} (359f)
| −0.2257
| −0.2257
| 0.2426
| 0.2426
| 7.26
| 7.26
Line 93: Line 93:
| [[Counterschismic]]
| [[Counterschismic]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


== Music ==
== Music ==
; [[Francium]]
; [[Francium]]
* "This Madness Won't Stop!" from ''End Of Sartorius Membranes'' (2024) &ndash; [https://open.spotify.com/track/50O9nTxeMafR8AyBtsPSKa Spotify] | [https://francium223.bandcamp.com/track/this-madness-wont-stop Bandcamp] | [https://www.youtube.com/watch?v=UJyIKzgLVQU YouTube]
* "This Madness Won't Stop!" from ''End Of Sartorius Membranes'' (2024) [https://open.spotify.com/track/50O9nTxeMafR8AyBtsPSKa Spotify] | [https://francium223.bandcamp.com/track/this-madness-wont-stop Bandcamp] | [https://www.youtube.com/watch?v=UJyIKzgLVQU YouTube]


[[Category:Hera]]
[[Category:Hera]]
[[Category:Listen]]
[[Category:Listen]]

Revision as of 19:35, 15 January 2025

← 358edo 359edo 360edo →
Prime factorization 359 (prime)
Step size 3.34262 ¢ 
Fifth 210\359 (701.95 ¢)
(semiconvergent)
Semitones (A1:m2) 34:27 (113.6 ¢ : 90.25 ¢)
Consistency limit 11
Distinct consistency limit 11

Template:EDO intro

Theory

359edo contains a very close approximation of the pure 3/2 fifth of 701.955 cents, with the 210\359 step of 701.94986 cents. In the 5-limit it tempers out the würschmidt comma and the counterschisma; in the 7-limit 2401/2400 and 3136/3125, supporting hemiwürschmidt; in the 11-limit, 8019/8000, providing the optimal patent val for 11-limit hera.

359edo supports a type of exaggerated Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America[citation needed]; the 678.495 ¢ Pythagorean diminished sixth; in 359edo this is reached using 203 steps, or 678.55153 ¢.

Pythagorean diatonic scale: 61 61 27 61 61 61 27

Exaggerated Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the square root of Pi [+1\359 step of each one][clarification needed]).

Prime harmonics

Approximation of prime harmonics in 359edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.01 +1.43 +0.53 +0.21 -1.53 -1.33 -0.02 +0.14 -0.05 +1.48
Relative (%) +0.0 -0.2 +42.8 +16.0 +6.4 -45.8 -39.9 -0.6 +4.1 -1.5 +44.4
Steps
(reduced)
359
(0)
569
(210)
834
(116)
1008
(290)
1242
(165)
1328
(251)
1467
(31)
1525
(89)
1624
(188)
1744
(308)
1779
(343)

Subsets and supersets

359edo is the 72nd prime edo. 718edo, which doubles it, provides a good correction to the harmonics 5, 13, 17, and 31.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-569 359 [359 569]] +0.0016 0.0016 0.05
2.3.5 393216/390625, [-69 45 -1 [359 569 834]] −0.2042 0.2910 8.71
2.3.5.7 2401/2400, 3136/3125, [-18 24 -5 -3 [359 569 834 1008]] −0.2007 0.2521 7.54
2.3.5.7.11 2401/2400, 3136/3125, 8019/8000, 42592/42525 [359 569 834 1008 1242]] −0.1729 0.2322 6.95
2.3.5.7.11.13 729/728, 847/845, 1001/1000, 1716/1715, 3136/3125 [359 569 834 1008 1242 1328]] (359f) −0.2257 0.2426 7.26

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 58\359 193.87 28/25 Hemiwürschmidt
1 116\359 387.74 5/4 Würschmidt (5-limit)
1 149\359 498.05 4/3 Counterschismic

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Music

Francium