631edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
No edit summary
ArrowHead294 (talk | contribs)
m Partial undo
Line 12: Line 12:


== Regular temperament properties ==
== Regular temperament properties ==
{{comma basis begin}}
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 55: Line 64:
| 0.1099
| 0.1099
| 5.78
| 5.78
{{comma basis end}}
|}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{{rank-2 begin}}
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
|-
| 1
| 1
Line 65: Line 81:
| 4/3
| 4/3
| [[Helmholtz]] / [[Pontiac]]
| [[Helmholtz]] / [[Pontiac]]
{{rank-2 end}}
|}
{{orf}}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct


== Music ==
== Music ==

Revision as of 13:08, 16 November 2024

← 630edo 631edo 632edo →
Prime factorization 631 (prime)
Step size 1.90174 ¢ 
Fifth 369\631 (701.743 ¢)
Semitones (A1:m2) 59:48 (112.2 ¢ : 91.28 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

631edo is consistent to the 9-odd-limit, with all of the odd harmonics having a flat tendency. Using the patent val, the equal temperament tempers out 4375/4374, 41503/41472, 32805/32768 and 12005/11979 in the 11-limit; 1575/1573, 4375/4374, 4459/4455, 4225/4224 and 83349/83200 in the 13-limit.

Odd harmonics

Approximation of odd harmonics in 631edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.212 -0.260 -0.839 -0.423 +0.188 +0.043 -0.472 -0.360 -0.841 +0.851 -0.699
Relative (%) -11.1 -13.7 -44.1 -22.3 +9.9 +2.3 -24.8 -18.9 -44.2 +44.8 -36.8
Steps
(reduced)
1000
(369)
1465
(203)
1771
(509)
2000
(107)
2183
(290)
2335
(442)
2465
(572)
2579
(55)
2680
(156)
2772
(248)
2854
(330)

Subsets and supersets

631edo is the 115th prime EDO.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-1000 631 [631 1000]] 0.0668 0.0668 3.51
2.3.5 32805/32768, [-50 -71 70 [631 1000 1465]] 0.0818 0.0585 3.08
2.3.5.7 4375/4374, 32805/32768, 678223072849/675000000000 [631 1000 1465 1771]] 0.1361 0.1067 5.61
2.3.5.7.11 4375/4374, 41503/41472, 32805/32768, 12005/11979 [631 1000 1465 1771 2183]] 0.0980 0.1221 6.42
2.3.5.7.11.13 1575/1573, 4375/4374, 4459/4455, 4225/4224, 83349/83200 [631 1000 1465 1771 2183 2335]] 0.0797 0.1187 6.24
2.3.5.7.11.13.17 1225/1224, 1701/1700, 833/832, 1575/1573, 4459/4455, 4225/4224 [631 1000 1465 1771 2183 2335 2579]] 0.0809 0.1099 5.78

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 262\631 498.257 4/3 Helmholtz / Pontiac

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Music

Francium