327edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Review
ArrowHead294 (talk | contribs)
mNo edit summary
Line 9: Line 9:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 327 factors into 3 × 109, 327edo has [[3edo]] and [[109edo]] as its subsets.
Since 327 factors into {{nowrap|3 × 109}}, 327edo has [[3edo]] and [[109edo]] as its subsets.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{{comma basis begin}}
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning Error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 56: Line 48:
| 0.2441
| 0.2441
| 6.65
| 6.65
|}
{{comma basis end}}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{{rank-2 begin}}
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>Ratio*
! Temperaments
|-
|-
| 1
| 1
Line 84: Line 70:
| 10/9
| 10/9
| [[Mirkat]]
| [[Mirkat]]
|}
{{rank-2 end}}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
{{orf}}

Revision as of 03:06, 16 November 2024

← 326edo 327edo 328edo →
Prime factorization 3 × 109
Step size 3.66972 ¢ 
Fifth 191\327 (700.917 ¢)
Semitones (A1:m2) 29:26 (106.4 ¢ : 95.41 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

327edo is consistent to the 7-odd-limit, though it has a reasonable approximation to the full 13-limit in its patent val. The equal temperament tempers out the semicomma in the 5-limit; 16875/16807, 19683/19600, 250047/250000, and 2100875/2097152 in the 7-limit; 540/539, 1375/1372, 3025/3024, 8019/8000, 35937/35840, 46656/46585, 102487/102400, 137781/137500, and 160083/160000 in the 11-limit; and 625/624, 1575/1573, 1716/1715, 2200/2197, 4225/4224, and 10648/10647 in the 13-limit. It supports mirkat, pnict, and the subgroup temperament petrtri.

Odd harmonics

Approximation of odd harmonics in 327edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -1.04 -0.99 -0.02 +1.59 -0.86 -0.16 +1.64 +1.47 -0.27 -1.06 -0.75
Relative (%) -28.3 -27.0 -0.5 +43.5 -23.4 -4.4 +44.7 +40.0 -7.2 -28.8 -20.5
Steps
(reduced)
518
(191)
759
(105)
918
(264)
1037
(56)
1131
(150)
1210
(229)
1278
(297)
1337
(29)
1389
(81)
1436
(128)
1479
(171)

Subsets and supersets

Since 327 factors into 3 × 109, 327edo has 3edo and 109edo as its subsets.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-518 327 | [327 518]] | 0.3273 | 0.3274 | 8.92 |- | 2.3.5 | 2109375/2097152, [-20 39 -18 | [327 518 759]] | 0.3608 | 0.2715 | 7.40 |- | 2.3.5.7 | 16875/16807, 19683/19600, 2100875/2097152 | [327 518 759 918]] | 0.2722 | 0.2807 | 7.65 |- | 2.3.5.7.11 | 540/539, 1375/1372, 8019/8000, 2100875/2097152 | [327 518 759 918 1131]] | 0.2674 | 0.2512 | 6.85 |- | 2.3.5.7.11.13 | 540/539, 625/624, 1575/1573, 2200/2197, 8019/8000 | [327 518 759 918 1131 1210]] | 0.2301 | 0.2441 | 6.65 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 74\327 | 271.56 | 75/64 | Orson |- | 3 | 44\327 | 161.47 | 192/175 | Pnict |- | 3 | 50\327 | 183.49 | 10/9 | Mirkat Template:Rank-2 end Template:Orf