Wesley family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Update keys
Review optimal ET sequences
Line 7: Line 7:


{{Mapping|legend=1| 1 4 3 | 0 -7 -2 }}
{{Mapping|legend=1| 1 4 3 | 0 -7 -2 }}
: mapping generators: ~2, ~125/96


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/96 = 414.509
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/96 = 414.509


{{Optimal ET sequence|legend=1| 3, 23, 26, 29, 55c }}
{{Optimal ET sequence|legend=1| 3, …, 23, 26, 29, 55c }}


[[Badness]]: 0.247718
[[Badness]]: 0.247718
Line 25: Line 27:
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 415.519
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 415.519


{{Optimal ET sequence|legend=1| 3d, 23d, 26 }}
{{Optimal ET sequence|legend=1| 3d, …, 23d, 26 }}


[[Badness]]: 0.095344
[[Badness]]: 0.095344
Line 38: Line 40:
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 415.769
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 415.769


{{Optimal ET sequence|legend=1| 3de, 23de, 26, 75bcd }}
{{Optimal ET sequence|legend=1| 3de, …, 23de, 26 }}


Badness: 0.049066
Badness: 0.049066
Line 51: Line 53:
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 415.645
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 415.645


{{Optimal ET sequence|legend=1| 3def, 26 }}
{{Optimal ET sequence|legend=1| 3def, 23deff, 26 }}


Badness: 0.038402
Badness: 0.038402
Line 66: Line 68:
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 413.513
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 413.513


{{Optimal ET sequence|legend=1| 29, 90cd, 119ccdd }}
{{Optimal ET sequence|legend=1| 3d, …, 26d, 29 }}


[[Badness]]: 0.117943
[[Badness]]: 0.117943
Line 79: Line 81:
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 413.490
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 413.490


{{Optimal ET sequence|legend=1| 29, 90cd, 119ccdde }}
{{Optimal ET sequence|legend=1| 3de, …, 26de, 29 }}


Badness: 0.054296
Badness: 0.054296
Line 138: Line 140:
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~192/175 = 185.738
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~192/175 = 185.738


{{Optimal ET sequence|legend=1| 6, 26, 58c, 84c }}
{{Optimal ET sequence|legend=1| 6, 20b, 26, 58c }}


[[Badness]]: 0.181726
[[Badness]]: 0.181726
Line 151: Line 153:
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 185.879
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 185.879


{{Optimal ET sequence|legend=1| 6, 26, 58c, 84c }}
{{Optimal ET sequence|legend=1| 6, 20b, 26 }}


Badness: 0.075842
Badness: 0.075842
Line 164: Line 166:
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 185.702
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 185.702


{{Optimal ET sequence|legend=1| 26, 58c, 84c }}
{{Optimal ET sequence|legend=1| 6f, 20bff, 26 }}


Badness: 0.049603
Badness: 0.049603

Revision as of 08:41, 21 September 2023

The wesley family of rank-2 temperaments tempers out the wesley comma, 78125/73728. The wesley comma is unchanged in Wesley Woolhouse's 7/26-comma meantone – it is an eigenmonzo (i.e. unchanged-interval). Here is a talk by Gene Ward Smith.

Wesley

Subgroup: 2.3.5

Comma list: 78125/73728

Mapping[1 4 3], 0 -7 -2]]

mapping generators: ~2, ~125/96

Optimal tuning (POTE): ~2 = 1\1, ~125/96 = 414.509

Optimal ET sequence3, …, 23, 26, 29, 55c

Badness: 0.247718

Septimal wesley

Subgroup: 2.3.5.7

Comma list: 405/392, 875/864

Mapping[1 4 3 8], 0 -7 -2 -15]]

Wedgie⟨⟨ 7 2 15 -13 4 29 ]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 415.519

Optimal ET sequence3d, …, 23d, 26

Badness: 0.095344

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 99/98, 875/864

Mapping: [1 4 3 8 9], 0 -7 -2 -15 -16]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 415.769

Optimal ET sequence3de, …, 23de, 26

Badness: 0.049066

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 78/77, 99/98, 325/324

Mapping: [1 4 3 8 9 12], 0 -7 -2 -15 -16 -24]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 415.645

Optimal ET sequence3def, 23deff, 26

Badness: 0.038402

Snipes

Subgroup: 2.3.5.7

Comma list: 225/224, 6125/5832

Mapping[1 4 3 9], 0 -7 -2 -18]]

Wedgie⟨⟨ 7 2 18 -13 9 36 ]]

Optimal tuning (POTE): ~2 = 1\1, ~35/27 = 413.513

Optimal ET sequence3d, …, 26d, 29

Badness: 0.117943

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 225/224, 245/242

Mapping: [1 4 3 9 10], 0 -7 -2 -18 -19]]

Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 413.490

Optimal ET sequence3de, …, 26de, 29

Badness: 0.054296

Roman

7-limit a.k.a. crusher

Subgroup: 2.3.5.7

Comma list: 525/512, 3125/3024

Mapping[1 4 3 -1], 0 -7 -2 11]]

Wedgie⟨⟨ 7 2 -11 -13 -37 -31 ]]

Optimal tuning (POTE): ~2 = 1\1, ~63/50 = 414.552

Optimal ET sequence3, 23, 26, 29, 55c

Badness: 0.113386

11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 245/242, 525/512

Mapping: [1 4 3 -1 0], 0 -7 -2 11 10]]

Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 414.471

Optimal ET sequence3, 23, 26, 29, 55c

Badness: 0.052841

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 65/64, 100/99, 105/104, 245/242

Mapping: [1 4 3 -1 0 3], 0 -7 -2 11 10 2]]

Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 414.472

Optimal ET sequence3, 23, 26, 29, 55cf

Badness: 0.030043

Dubbla

Subgroup: 2.3.5.7

Comma list: 50/49, 78125/73728

Mapping[2 1 4 5], 0 7 2 2]]

Wedgie⟨⟨ 14 4 4 -26 -33 -2 ]]

Optimal tuning (POTE): ~2 = 1\1, ~192/175 = 185.738

Optimal ET sequence6, 20b, 26, 58c

Badness: 0.181726

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 125/121, 1344/1331

Mapping: [2 1 4 5 6], 0 7 2 2 3]]

Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 185.879

Optimal ET sequence6, 20b, 26

Badness: 0.075842

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 105/104, 125/121, 144/143

Mapping: [2 1 4 5 6 4], 0 7 2 2 3 11]]

Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 185.702

Optimal ET sequence6f, 20bff, 26

Badness: 0.049603