1308edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
mNo edit summary
Cleanup; links; expansion
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
'''1308edo''' is the [[EDO|equal division of the octave]] into 1308 parts of 0.917431 cents each. It is consistent to the 21-limit distinctly, tempering out |37 25 -33> (whoosh comma) and |-46 51 -15> (171&453 comma) in the 5-limit; 250047/250000, 2460375/2458624, and |47 4 0 -19> in the 7-limit; 9801/9800, 151263/151250, 234375/234256, and 67110351/67108864 in the 11-limit; 4225/4224, 6656/6655, 50193/50176, 91125/91091, and 655473/655360 in the 13-limit; 2601/2600, 5832/5831, 11016/11011, 11271/11264, 12376/12375, and 108086/108045 in the 17-limit; 5491/5488, 5776/5775, 5985/5984, 6175/6174, 10241/10240, and 10830/10829 in the 19-limit.
{{EDO intro|1308}}


1308edo is the 15th [[The Riemann Zeta Function and Tuning|zeta gap edo]].
1308edo is [[consistent]] to the [[21-odd-limit]] distinctly, tempering out {{monzo| 37 25 -33 }} (whoosh comma) and {{monzo| -46 51 -15}} (171 & 453 comma) in the 5-limit; [[250047/250000]], [[2460375/2458624]], and {{monzo| 47 4 0 -19 }} in the 7-limit; [[9801/9800]], 151263/151250, 234375/234256, and 67110351/67108864 in the 11-limit; [[4225/4224]], [[6656/6655]], 50193/50176, 91125/91091, and 655473/655360 in the 13-limit; [[2601/2600]], [[5832/5831]], [[11016/11011]], 11271/11264, [[12376/12375]], and 108086/108045 in the 17-limit; 5491/5488, 5776/5775, 5985/5984, 6175/6174, 10241/10240, and 10830/10829 in the 19-limit.


[[Category:Equal divisions of the octave|####]] <!-- 4-digit number -->
1308edo is the 15th [[zeta gap edo]].
 
=== Prime harmonics ===
{{Harmonics in equal|1308}}
 
=== Subsets and supersets ===
Since 1308 factors into 2<sup>2</sup> × 3 × 109, 1308edo has subset edos 2, 3, 4, 6, 12, 109, 218, 327, 436, and 654.

Revision as of 07:35, 29 July 2023

← 1307edo 1308edo 1309edo →
Prime factorization 22 × 3 × 109
Step size 0.917431 ¢ 
Fifth 765\1308 (701.835 ¢) (→ 255\436)
Semitones (A1:m2) 123:99 (112.8 ¢ : 90.83 ¢)
Consistency limit 21
Distinct consistency limit 21

Template:EDO intro

1308edo is consistent to the 21-odd-limit distinctly, tempering out [37 25 -33 (whoosh comma) and [-46 51 -15 (171 & 453 comma) in the 5-limit; 250047/250000, 2460375/2458624, and [47 4 0 -19 in the 7-limit; 9801/9800, 151263/151250, 234375/234256, and 67110351/67108864 in the 11-limit; 4225/4224, 6656/6655, 50193/50176, 91125/91091, and 655473/655360 in the 13-limit; 2601/2600, 5832/5831, 11016/11011, 11271/11264, 12376/12375, and 108086/108045 in the 17-limit; 5491/5488, 5776/5775, 5985/5984, 6175/6174, 10241/10240, and 10830/10829 in the 19-limit.

1308edo is the 15th zeta gap edo.

Prime harmonics

Approximation of prime harmonics in 1308edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.120 -0.075 -0.019 +0.058 -0.161 -0.368 -0.265 +0.166 -0.219 -0.081
Relative (%) +0.0 -13.1 -8.2 -2.0 +6.3 -17.5 -40.1 -28.9 +18.1 -23.9 -8.9
Steps
(reduced)
1308
(0)
2073
(765)
3037
(421)
3672
(1056)
4525
(601)
4840
(916)
5346
(114)
5556
(324)
5917
(685)
6354
(1122)
6480
(1248)

Subsets and supersets

Since 1308 factors into 22 × 3 × 109, 1308edo has subset edos 2, 3, 4, 6, 12, 109, 218, 327, 436, and 654.