433edo: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
Rework; cleanup; clarify the title row of the rank-2 temp table |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|433}} | {{EDO intro|433}} | ||
== Theory == | == Theory == | ||
443edo is only [[consistent]] to the [[5-odd-limit]] since [[harmonic]] [[7/1|7]] is about halfway between its steps. To start with, the [[patent val]] {{val| 433 686 1005 '''1216''' }} as well as the 433d [[val]] {{val| 433 686 1005 '''1215''' }} are worth considering. | |||
===Subsets and supersets=== | |||
Using the patent val, the equal temperament [[tempering out|tempers out]] [[19683/19600]] and 4096000/4084101 in the 7-limit; [[3025/3024]], [[4000/3993]], [[6250/6237]], 161280/161051, and 180224/180075 in the 11-limit. | |||
=== Odd harmonics === | |||
{{Harmonics in equal|433}} | |||
=== Subsets and supersets === | |||
433edo is the 84th [[prime edo]]. | 433edo is the 84th [[prime edo]]. | ||
== Regular temperament properties == | |||
==Regular temperament properties== | |||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal<br>8ve Stretch (¢) | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" |Tuning Error | ! colspan="2" | Tuning Error | ||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
![[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3 | | 2.3 | ||
|{{monzo|-686 433}} | | {{monzo| -686 433 }} | ||
|{{ | | {{mapping| 433 686 }} | ||
| 0.2525 | | 0.2525 | ||
| 0.2525 | | 0.2525 | ||
| 9.11 | | 9.11 | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
| | | 2109375/2097152, {{monzo| -29 52 -23 }} | ||
|{{ | | {{mapping| 433 686 1005 }} | ||
| 0.3254 | | 0.3254 | ||
| 0.2306 | | 0.2306 | ||
| 8.32 | | 8.32 | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7 | ||
|19683/19600, 4096000/4084101, 2109375/2097152 | | 19683/19600, 4096000/4084101, 2109375/2097152 | ||
|{{ | | {{mapping| 433 686 1005 1216 }} | ||
| 0.1414 | | 0.1414 | ||
| 0.3759 | | 0.3759 | ||
| 13.56 | | 13.56 | ||
|- | |- | ||
|2.3.5.7.11 | | 2.3.5.7.11 | ||
|3025/3024, 6250/6237, 30375/30184, 180224/180075 | | 3025/3024, 6250/6237, 30375/30184, 180224/180075 | ||
|{{ | | {{mapping| 433 686 1005 1216 1498 }} | ||
| 0.1026 | | 0.1026 | ||
| 0.3451 | | 0.3451 | ||
| 12.45 | | 12.45 | ||
|- | |- | ||
|2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
|2080/2079, 625/624, 3025/3024, 18954/18865, 41472/41405 | | 2080/2079, 625/624, 3025/3024, 18954/18865, 41472/41405 | ||
|{{ | | {{mapping| 433 686 1005 1216 1498 1602 }} | ||
| 0.1217 | | 0.1217 | ||
| 0.3179 | | 0.3179 | ||
| 11.47 | | 11.47 | ||
|- | |- | ||
|2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
|2080/2079, 375/374, 715/714, 936/935, 1377/1372, 76032/75803 | | 2080/2079, 375/374, 715/714, 936/935, 1377/1372, 76032/75803 | ||
|{{ | | {{mapping| 433 686 1005 1216 1498 1602 1770 }} | ||
| 0.0919 | | 0.0919 | ||
| 0.3033 | | 0.3033 | ||
Line 65: | Line 71: | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br> | ! Associated<br>Ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|1 | | 1 | ||
|98\433 | | 98\433 | ||
|271.594 | | 271.594 | ||
|75/64 | | 75/64 | ||
|[[Orson]] | | [[Orson]] | ||
|} | |} | ||
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct | |||
==Music== | == Music == | ||
* [https://www.youtube.com/watch?v=M4CFR4yYF_U sleeping as we don't know] | ; [[User:Francium|Francium]] | ||
* [https://www.youtube.com/watch?v=M4CFR4yYF_U ''sleeping as we don't know''] (2023) |
Revision as of 08:18, 3 November 2023
← 432edo | 433edo | 434edo → |
Theory
443edo is only consistent to the 5-odd-limit since harmonic 7 is about halfway between its steps. To start with, the patent val ⟨433 686 1005 1216] as well as the 433d val ⟨433 686 1005 1215] are worth considering.
Using the patent val, the equal temperament tempers out 19683/19600 and 4096000/4084101 in the 7-limit; 3025/3024, 4000/3993, 6250/6237, 161280/161051, and 180224/180075 in the 11-limit.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.80 | -1.09 | +1.15 | +1.17 | +0.18 | -0.80 | +0.88 | +0.36 | -0.98 | +0.35 | +0.82 |
Relative (%) | -28.9 | -39.5 | +41.5 | +42.2 | +6.6 | -29.0 | +31.6 | +12.9 | -35.3 | +12.7 | +29.8 | |
Steps (reduced) |
686 (253) |
1005 (139) |
1216 (350) |
1373 (74) |
1498 (199) |
1602 (303) |
1692 (393) |
1770 (38) |
1839 (107) |
1902 (170) |
1959 (227) |
Subsets and supersets
433edo is the 84th prime edo.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-686 433⟩ | [⟨433 686]] | 0.2525 | 0.2525 | 9.11 |
2.3.5 | 2109375/2097152, [-29 52 -23⟩ | [⟨433 686 1005]] | 0.3254 | 0.2306 | 8.32 |
2.3.5.7 | 19683/19600, 4096000/4084101, 2109375/2097152 | [⟨433 686 1005 1216]] | 0.1414 | 0.3759 | 13.56 |
2.3.5.7.11 | 3025/3024, 6250/6237, 30375/30184, 180224/180075 | [⟨433 686 1005 1216 1498]] | 0.1026 | 0.3451 | 12.45 |
2.3.5.7.11.13 | 2080/2079, 625/624, 3025/3024, 18954/18865, 41472/41405 | [⟨433 686 1005 1216 1498 1602]] | 0.1217 | 0.3179 | 11.47 |
2.3.5.7.11.13.17 | 2080/2079, 375/374, 715/714, 936/935, 1377/1372, 76032/75803 | [⟨433 686 1005 1216 1498 1602 1770]] | 0.0919 | 0.3033 | 10.94 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 98\433 | 271.594 | 75/64 | Orson |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct
Music
- sleeping as we don't know (2023)