1547edo: Difference between revisions
Jump to navigation
Jump to search
rtt table |
|||
Line 3: | Line 3: | ||
==Theory== | ==Theory== | ||
{{harmonics in equal|1547}} | {{harmonics in equal|1547}} | ||
1547edo is excellent in the 7-limit. | 1547edo is excellent in the 7-limit. It tempers out [[4375/4374]] and it is a member of the [[optimal GPV sequence]] for the rank-3 temperament associated with this comma. | ||
In the 5-limit, it supports [[gross]]. | In the 5-limit, it supports [[gross]]. | ||
Line 13: | Line 13: | ||
1547's divisors are {{EDOs|1, 7, 13, 17, 91, 119, 221}}. | 1547's divisors are {{EDOs|1, 7, 13, 17, 91, 119, 221}}. | ||
==Regular temperament properties== | ==Regular temperament properties== | ||
===Rank-2 temperaments | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | |||
! rowspan="2" |[[Comma list|Comma List]] | |||
! rowspan="2" |[[Mapping]] | |||
! rowspan="2" |Optimal 8ve | |||
Stretch (¢) | |||
! colspan="2" |Tuning Error | |||
|- | |||
![[TE error|Absolute]] (¢) | |||
![[TE simple badness|Relative]] (%) | |||
|- | |||
|2.3 | |||
|{{monzo|2452 -1547}} | |||
|[{{val|1547 2542}}] | |||
|<nowiki>-0.015</nowiki> | |||
|0.015 | |||
| | |||
|- | |||
|2.3.5 | |||
|<nowiki>-52 -17 34, 40 -56 21</nowiki> | |||
|[{{val|1547 2542 3592}}] | |||
|<nowiki>-0.008</nowiki> | |||
| | |||
| | |||
|- | |||
|2.3.5.7 | |||
|4375/4374, -1 4 11 -11, 46 -14 -3 -6 | |||
|[{{val|1547 2542 3592 4343}}] | |||
| -0.007 | |||
|0.014 | |||
| | |||
|- | |||
|2.3.5.7.11 | |||
|4375/4374, 151263/151250, 820125/819896, 2097152/2096325 | |||
|[{{val|1547 2542 3592 4343 5352}}] | |||
|<nowiki>-0.017</nowiki> | |||
|0.024 | |||
| | |||
|- | |||
|2.3.5.7.11.13 | |||
|4375/4374, 4096/4095, 10648/10647, 91125/91091, 105644/105625 | |||
|[{{val|1547 2542 3592 4343 5352 5725}}] | |||
|<nowiki>-0.029</nowiki> | |||
|0.034 | |||
| | |||
|} | |||
===Rank-2 temperaments=== | |||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator |
Revision as of 13:04, 5 January 2023
← 1546edo | 1547edo | 1548edo → |
Theory
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.049 | -0.018 | +0.017 | +0.201 | +0.326 | -0.237 | +0.354 | +0.039 | -0.230 | -0.110 |
Relative (%) | +0.0 | +6.3 | -2.3 | +2.2 | +25.9 | +42.0 | -30.5 | +45.6 | +5.0 | -29.7 | -14.2 | |
Steps (reduced) |
1547 (0) |
2452 (905) |
3592 (498) |
4343 (1249) |
5352 (711) |
5725 (1084) |
6323 (135) |
6572 (384) |
6998 (810) |
7515 (1327) |
7664 (1476) |
1547edo is excellent in the 7-limit. It tempers out 4375/4374 and it is a member of the optimal GPV sequence for the rank-3 temperament associated with this comma.
In the 5-limit, it supports gross.
In the 7-limit, it supports semidimi and brahmagupta.
In the 17-limit, it supports 91th-octave temperament protactinium.
1547's divisors are 1, 7, 13, 17, 91, 119, 221.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve
Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [2452 -1547⟩ | [⟨1547 2542]] | -0.015 | 0.015 | |
2.3.5 | -52 -17 34, 40 -56 21 | [⟨1547 2542 3592]] | -0.008 | ||
2.3.5.7 | 4375/4374, -1 4 11 -11, 46 -14 -3 -6 | [⟨1547 2542 3592 4343]] | -0.007 | 0.014 | |
2.3.5.7.11 | 4375/4374, 151263/151250, 820125/819896, 2097152/2096325 | [⟨1547 2542 3592 4343 5352]] | -0.017 | 0.024 | |
2.3.5.7.11.13 | 4375/4374, 4096/4095, 10648/10647, 91125/91091, 105644/105625 | [⟨1547 2542 3592 4343 5352 5725]] | -0.029 | 0.034 |
Rank-2 temperaments
Periods per 8ve |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 118\1547 | 91.532 | [9 -32 18> | Gross |
1 | 579\1547 | 449.127 | 35/27 | Semidimi |
7 | 670\1547 (7\1547) |
519.715 (5.429) |
27/20 (325/324) |
Brahmagupta |
91 | 905\1547 (4\1547) |
702.003 (3.103) |
3/2 (?) |
Protactinium |