15900edo: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
, and this temperament also tempers out the [[magnetisma]]. | |||
=== Divisors === | |||
15900edo has subset EDOs 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 53, 60, 75, 100, 106, 150, 159, 212, 265, 300, 318, 530, 636, 795, 1060, 1325, 1590, 2650, 3180, 3975, 5300, 7950. | |||
A single step of 15900edo is the [[relative cent]] of [[159edo]]. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|15900}} | {{Harmonics in equal|15900}} | ||
[[Category:Equal divisions of the octave|#####]] <!-- 5-digit number --> | [[Category:Equal divisions of the octave|#####]] <!-- 5-digit number --> |
Revision as of 14:13, 18 January 2023
← 15899edo | 15900edo | 15901edo → |
The 15900 equal divisions of the octave, or the 15900-tone equal temperament (15900tet), 15900 equal temperament (15900et) when viewed from a regular temperament perspective, divides the octave into 15900 equal parts of about 0.075 cents each.
Theory
, and this temperament also tempers out the magnetisma.
Divisors
15900edo has subset EDOs 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 53, 60, 75, 100, 106, 150, 159, 212, 265, 300, 318, 530, 636, 795, 1060, 1325, 1590, 2650, 3180, 3975, 5300, 7950.
A single step of 15900edo is the relative cent of 159edo.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0000 | +0.0073 | +0.0259 | +0.0043 | +0.0028 | +0.0006 | +0.0257 | -0.0036 | +0.0275 | +0.0077 | +0.0210 |
Relative (%) | +0.0 | +9.6 | +34.3 | +5.7 | +3.7 | +0.8 | +34.1 | -4.7 | +36.5 | +10.2 | +27.9 | |
Steps (reduced) |
15900 (0) |
25201 (9301) |
36919 (5119) |
44637 (12837) |
55005 (7305) |
58837 (11137) |
64991 (1391) |
67542 (3942) |
71925 (8325) |
77242 (13642) |
78772 (15172) |