Module:Infobox ET: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
Make zeta properties display opt-in, but always include zeta categories nonetheless |
||
(148 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
local p = {} | local p = {} | ||
local ET = require("Module:ET") | |||
local | local infobox = require("Module:Infobox") | ||
local limits = require("Module:Limits") | |||
local rat = require("Module:Rational") | |||
local utils = require("Module:Utils") | |||
-- check whether the input is a non-empty string | |||
local function value_provided(s) | |||
return type(s) == "string" and #s > 0 | |||
end | end | ||
-- towards is one of: -1 (floor), 0 (nearest), 1 (ceil) | -- towards is one of: -1 (floor), 0 (nearest), 1 (ceil) | ||
local function approximation( | local function approximation(et, interval, towards, precomputed_approx) | ||
local approx = approximate( | local approx = precomputed_approx or ET.approximate(et, interval, towards or 0) | ||
if | |||
-- string for backslash notation | |||
-- "edo" is omitted | |||
local tuning = et.size | |||
if not rat.eq(et.equave, 2) then | |||
tuning = tuning .. et.suffix | |||
end | end | ||
local | |||
local ratio = rat.new(approx, et.size) | |||
-- convergence notice, suppressed for 1ed's | |||
local convergement_notice = "" | |||
local converges = rat.converges(ratio, math.log(interval) / math.log(rat.as_float(et.equave))) | |||
if et.size > 1 and converges then | |||
convergement_notice = "<br>(" .. converges .. ")" | |||
end | end | ||
if rat.as_table(ratio)[1] ~= approx then | if rat.as_table(ratio)[1] ~= approx then | ||
local link = rat.as_table(ratio)[2] .. suffix | convergement_notice = "" | ||
ratio = | local link = rat.as_table(ratio)[2] .. et.suffix | ||
ratio = string.format(" (→ [[%s|%s%s]])", | |||
link, | |||
rat.as_ratio(ratio, "\\"), | |||
(rat.eq(et.equave, 2) == false and et.suffix or "")) | |||
else | else | ||
ratio = | ratio = "" | ||
end | end | ||
local cents = | |||
return approx .. | local cents = utils._round(ET.cents(et, approx), 6) | ||
return approx .. "\\" .. tuning .. " (" .. cents .. "{{c}})" .. ratio .. convergement_notice | |||
end | end | ||
function p.infobox_ET(frame) | function p.infobox_ET(frame) | ||
local tuning = frame.args[ | -- debug mode will disable the categories | ||
local | local debug_mode = frame.args["debug"] | ||
local categories = "" | |||
if | |||
local tuning = frame.args["tuning"] | |||
local et = ET.parse(tuning) or ET.parse(tuning .. "edo") or ET.parse("12edo") | |||
-- category of the main article | |||
categories = categories .. "{{#ifexist: Category:" .. tuning .. "|[[Category:" .. tuning .. "| ]]|}}" | |||
-- category of the equal division | |||
if rat.eq(et.equave, 2) then | |||
categories = categories | |||
.. "[[Category:Equal divisions of the octave|" | |||
.. string.rep("#", string.len(et.size)) | |||
.. "]]" | |||
elseif rat.eq(et.equave, 3) then | |||
categories = categories .. "[[Category:Edts|" .. string.rep("#", string.len(et.size)) .. "]]" | |||
elseif rat.eq(et.equave, rat.new (3, 2)) then | |||
categories = categories .. "[[Category:Edfs|" .. string.rep("#", string.len(et.size)) .. "]]" | |||
else | |||
categories = categories .. "[[Category:" .. et.suffix .. "'s|" .. string.rep("#", string.len(et.size)) .. "]]" | |||
end | end | ||
local | -- prime factorization | ||
if rat.eq(equave, 2) and | local prime_factorization_override = frame.args["Prime factorization"] | ||
local prime_factorization | |||
if not value_provided(prime_factorization_override) then | |||
prime_factorization = utils._prime_factorization(et.size) | |||
if utils.is_prime(et.size) then | |||
prime_factorization = prime_factorization .. " (prime)" | |||
if rat.eq(et.equave, 2) then | |||
categories = categories .. "[[Category:Prime EDOs|" .. string.rep("#", string.len(et.size)) .. "]]" | |||
end | |||
end | |||
else | |||
prime_factorization = prime_factorization_override | |||
end | |||
-- zeta test | |||
local zeta_override = frame.args["Zeta"] | |||
local zeta_switch | |||
if value_provided(zeta_override) then | |||
zeta_switch = zeta_override:match("^[Yy][Ee][Ss]$") and ET.is_zeta(et) | |||
else | |||
zeta_switch = false | |||
end | |||
-- navigation arrows | |||
local increment = 1 | |||
if rat.eq(et.equave, rat.new(9, 4)) or rat.eq(et.equave, 4) or rat.eq(et.equave, 9) then | |||
increment = 2 | |||
end | |||
local prev_one = "" | |||
if et.size >= increment then | |||
prev_one = "[[" .. (et.size - increment) .. et.suffix .. "|← " .. (et.size - increment) .. et.suffix .. "]]" | |||
end | |||
local next_one = "[[" .. (et.size + increment) .. et.suffix .. "|" .. (et.size + increment) .. et.suffix .. " →]]" | |||
-- step size in cents | |||
local step_size = ET.cents(et, 1) | |||
if step_size > 100 then | |||
categories = categories .. "[[Category:Macrotonal|" .. string.rep("#", string.len(et.size)) .. "]]" | |||
end | end | ||
local note_12edo = "" | |||
local octave = approximate( | if rat.eq(et.equave, 2) and et.size == 12 then | ||
local A1 = 7 * | note_12edo = " (by definition)" | ||
local m2 = | end | ||
local A1_cents = | |||
local m2_cents = | -- octave, twelfth, and fifth in steps | ||
local octave = ET.approximate(et, 2) | |||
local twelfth = ET.approximate(et, 3) | |||
local fifth = -octave + twelfth -- 3/2 = [-1 1> | |||
local fifth_error = ET.cents(et, fifth) - rat.cents(rat.new(3, 2)) | |||
local is_dual_fifth = math.abs(fifth_error) > step_size / 3 | |||
local A1 = -11 * octave + 7 * twelfth -- 2187/2048 = [-11 7> | |||
local m2 = 8 * octave - 5 * twelfth -- 256/243 = [8 -5> | |||
local A1_cents = utils._round(ET.cents(et, A1), 4) | |||
local m2_cents = utils._round(ET.cents(et, m2), 4) | |||
-- display | |||
local infobox_data = {} | local infobox_data = {} | ||
table.insert(infobox_data, { | table.insert(infobox_data, { | ||
"Prime factorization", | |||
prime_factorization, | |||
}) | }) | ||
table.insert(infobox_data, { | table.insert(infobox_data, { | ||
"Step size", | |||
utils._round(step_size, 6) .. "{{c}}" .. note_12edo .. " ", | |||
}) | }) | ||
if not rat.eq(et.equave, 2) then | |||
table.insert(infobox_data, { | table.insert(infobox_data, { | ||
"Octave", | |||
approximation( | approximation(et, 2), | ||
}) | }) | ||
if not rat.eq(et.equave, 3) then | |||
table.insert(infobox_data, { | |||
"Twelfth", | |||
approximation(et, 3), | |||
}) | |||
end | |||
else | |||
table.insert(infobox_data, { | table.insert(infobox_data, { | ||
"Fifth", | |||
approximation( | approximation(et, 3 / 2), | ||
}) | }) | ||
table.insert(infobox_data, { | table.insert(infobox_data, { | ||
"Semitones (A1:m2)", | |||
A1 .. ":" .. m2 .. " (" .. A1_cents .. "{{c}} : " .. m2_cents .. "{{c}})", | |||
}) | }) | ||
if is_dual_fifth and et.size > 0 then | |||
table.insert(infobox_data, { | |||
"Dual sharp fifth", | |||
approximation(et, 3 / 2, 1), | |||
}) | |||
table.insert(infobox_data, { | |||
"Dual flat fifth", | |||
approximation(et, 3 / 2, -1), | |||
}) | |||
local sharp = ET.approximate(et, 3 / 2, 1) | |||
local flat = ET.approximate(et, 3 / 2, -1) | |||
table.insert(infobox_data, { | |||
"Dual major 2nd", | |||
approximation(et, 9 / 8, 0, sharp + flat - octave), | |||
}) | |||
categories = categories | |||
.. "[[Category:Dual-fifth temperaments|" | |||
.. string.rep("#", string.len(et.size)) | |||
.. "]]" | |||
end | |||
end | end | ||
-- | -- consistency and distinct consistency | ||
-- | -- max_limit is used to prevent timeout | ||
local consistency = tonumber(frame.args["Consistency"]) | |||
local max_limit = rat.eq(et.equave, 2) and 43 or 32 | |||
if consistency == nil then | |||
consistency = limits.consistency_limit(et, false, max_limit) | |||
end | |||
if consistency == nil then | |||
consistency = "at least " .. max_limit | |||
end | |||
if consistency ~= nil then | |||
table.insert(infobox_data, { | table.insert(infobox_data, { | ||
"Consistency limit", | |||
consistency | consistency, | ||
}) | }) | ||
end | |||
local distinct_consistency = tonumber(frame.args["Distinct consistency"]) | |||
if distinct_consistency == nil then | |||
distinct_consistency = limits.consistency_limit(et, consistency or true, max_limit) | |||
end | |||
if distinct_consistency == nil then | |||
distinct_consistency = "at least " .. max_limit | |||
end | |||
if distinct_consistency ~= nil then | |||
table.insert(infobox_data, { | table.insert(infobox_data, { | ||
"Distinct consistency limit", | |||
distinct_consistency, | |||
}) | }) | ||
end | end | ||
local | -- special properties | ||
if ET.is_highly_composite(et) or ET.is_zeta(et) then | |||
local text = "" | |||
if ET.is_highly_composite(et) then | |||
text = text .. "[[Highly composite equal division|Highly composite]]" | |||
if rat.eq(et.equave, 2) then | |||
categories = categories | |||
.. "[[Category:Highly composite EDOs|" | |||
.. string.rep("#", string.len(et.size)) | |||
.. "]]" | |||
end | |||
end | |||
if ET.is_zeta(et) and rat.eq(et.equave, 2) then | |||
local | categories = categories | ||
.. "[[Category:Zeta record EDOs|" | |||
.. string.rep("#", string.len(et.size)) | |||
.. "]]" | |||
if zeta_switch then | |||
if #text > 0 then | |||
text = text .. "<br>" | |||
end | |||
text = text .. ET.why_zeta(et) | |||
end | |||
end | |||
if #text >0 then | |||
table.insert(infobox_data, { | |||
"Special properties", | |||
"<div style=\"max-width: 300px;\">" .. text .. "</div>", | |||
}) | |||
end | |||
end | |||
local result = infobox.build("[[" .. et.suffix .. "|" .. tuning .. "]]", infobox_data, prev_one, next_one) | |||
if not value_provided(debug_mode) then | |||
result = result .. categories | |||
end | end | ||
return | return frame:preprocess(result) | ||
end | end | ||
return p | return p |
Latest revision as of 18:27, 4 August 2025
Note: Do not invoke this module directly; use the corresponding template instead: Template:Infobox ET.
This module automatically fills in information about a specified equal temperament tuning.
local p = {}
local ET = require("Module:ET")
local infobox = require("Module:Infobox")
local limits = require("Module:Limits")
local rat = require("Module:Rational")
local utils = require("Module:Utils")
-- check whether the input is a non-empty string
local function value_provided(s)
return type(s) == "string" and #s > 0
end
-- towards is one of: -1 (floor), 0 (nearest), 1 (ceil)
local function approximation(et, interval, towards, precomputed_approx)
local approx = precomputed_approx or ET.approximate(et, interval, towards or 0)
-- string for backslash notation
-- "edo" is omitted
local tuning = et.size
if not rat.eq(et.equave, 2) then
tuning = tuning .. et.suffix
end
local ratio = rat.new(approx, et.size)
-- convergence notice, suppressed for 1ed's
local convergement_notice = ""
local converges = rat.converges(ratio, math.log(interval) / math.log(rat.as_float(et.equave)))
if et.size > 1 and converges then
convergement_notice = "<br>(" .. converges .. ")"
end
if rat.as_table(ratio)[1] ~= approx then
convergement_notice = ""
local link = rat.as_table(ratio)[2] .. et.suffix
ratio = string.format(" (→ [[%s|%s%s]])",
link,
rat.as_ratio(ratio, "\\"),
(rat.eq(et.equave, 2) == false and et.suffix or ""))
else
ratio = ""
end
local cents = utils._round(ET.cents(et, approx), 6)
return approx .. "\\" .. tuning .. " (" .. cents .. "{{c}})" .. ratio .. convergement_notice
end
function p.infobox_ET(frame)
-- debug mode will disable the categories
local debug_mode = frame.args["debug"]
local categories = ""
local tuning = frame.args["tuning"]
local et = ET.parse(tuning) or ET.parse(tuning .. "edo") or ET.parse("12edo")
-- category of the main article
categories = categories .. "{{#ifexist: Category:" .. tuning .. "|[[Category:" .. tuning .. "| ]]|}}"
-- category of the equal division
if rat.eq(et.equave, 2) then
categories = categories
.. "[[Category:Equal divisions of the octave|"
.. string.rep("#", string.len(et.size))
.. "]]"
elseif rat.eq(et.equave, 3) then
categories = categories .. "[[Category:Edts|" .. string.rep("#", string.len(et.size)) .. "]]"
elseif rat.eq(et.equave, rat.new (3, 2)) then
categories = categories .. "[[Category:Edfs|" .. string.rep("#", string.len(et.size)) .. "]]"
else
categories = categories .. "[[Category:" .. et.suffix .. "'s|" .. string.rep("#", string.len(et.size)) .. "]]"
end
-- prime factorization
local prime_factorization_override = frame.args["Prime factorization"]
local prime_factorization
if not value_provided(prime_factorization_override) then
prime_factorization = utils._prime_factorization(et.size)
if utils.is_prime(et.size) then
prime_factorization = prime_factorization .. " (prime)"
if rat.eq(et.equave, 2) then
categories = categories .. "[[Category:Prime EDOs|" .. string.rep("#", string.len(et.size)) .. "]]"
end
end
else
prime_factorization = prime_factorization_override
end
-- zeta test
local zeta_override = frame.args["Zeta"]
local zeta_switch
if value_provided(zeta_override) then
zeta_switch = zeta_override:match("^[Yy][Ee][Ss]$") and ET.is_zeta(et)
else
zeta_switch = false
end
-- navigation arrows
local increment = 1
if rat.eq(et.equave, rat.new(9, 4)) or rat.eq(et.equave, 4) or rat.eq(et.equave, 9) then
increment = 2
end
local prev_one = ""
if et.size >= increment then
prev_one = "[[" .. (et.size - increment) .. et.suffix .. "|← " .. (et.size - increment) .. et.suffix .. "]]"
end
local next_one = "[[" .. (et.size + increment) .. et.suffix .. "|" .. (et.size + increment) .. et.suffix .. " →]]"
-- step size in cents
local step_size = ET.cents(et, 1)
if step_size > 100 then
categories = categories .. "[[Category:Macrotonal|" .. string.rep("#", string.len(et.size)) .. "]]"
end
local note_12edo = ""
if rat.eq(et.equave, 2) and et.size == 12 then
note_12edo = " (by definition)"
end
-- octave, twelfth, and fifth in steps
local octave = ET.approximate(et, 2)
local twelfth = ET.approximate(et, 3)
local fifth = -octave + twelfth -- 3/2 = [-1 1>
local fifth_error = ET.cents(et, fifth) - rat.cents(rat.new(3, 2))
local is_dual_fifth = math.abs(fifth_error) > step_size / 3
local A1 = -11 * octave + 7 * twelfth -- 2187/2048 = [-11 7>
local m2 = 8 * octave - 5 * twelfth -- 256/243 = [8 -5>
local A1_cents = utils._round(ET.cents(et, A1), 4)
local m2_cents = utils._round(ET.cents(et, m2), 4)
-- display
local infobox_data = {}
table.insert(infobox_data, {
"Prime factorization",
prime_factorization,
})
table.insert(infobox_data, {
"Step size",
utils._round(step_size, 6) .. "{{c}}" .. note_12edo .. " ",
})
if not rat.eq(et.equave, 2) then
table.insert(infobox_data, {
"Octave",
approximation(et, 2),
})
if not rat.eq(et.equave, 3) then
table.insert(infobox_data, {
"Twelfth",
approximation(et, 3),
})
end
else
table.insert(infobox_data, {
"Fifth",
approximation(et, 3 / 2),
})
table.insert(infobox_data, {
"Semitones (A1:m2)",
A1 .. ":" .. m2 .. " (" .. A1_cents .. "{{c}} : " .. m2_cents .. "{{c}})",
})
if is_dual_fifth and et.size > 0 then
table.insert(infobox_data, {
"Dual sharp fifth",
approximation(et, 3 / 2, 1),
})
table.insert(infobox_data, {
"Dual flat fifth",
approximation(et, 3 / 2, -1),
})
local sharp = ET.approximate(et, 3 / 2, 1)
local flat = ET.approximate(et, 3 / 2, -1)
table.insert(infobox_data, {
"Dual major 2nd",
approximation(et, 9 / 8, 0, sharp + flat - octave),
})
categories = categories
.. "[[Category:Dual-fifth temperaments|"
.. string.rep("#", string.len(et.size))
.. "]]"
end
end
-- consistency and distinct consistency
-- max_limit is used to prevent timeout
local consistency = tonumber(frame.args["Consistency"])
local max_limit = rat.eq(et.equave, 2) and 43 or 32
if consistency == nil then
consistency = limits.consistency_limit(et, false, max_limit)
end
if consistency == nil then
consistency = "at least " .. max_limit
end
if consistency ~= nil then
table.insert(infobox_data, {
"Consistency limit",
consistency,
})
end
local distinct_consistency = tonumber(frame.args["Distinct consistency"])
if distinct_consistency == nil then
distinct_consistency = limits.consistency_limit(et, consistency or true, max_limit)
end
if distinct_consistency == nil then
distinct_consistency = "at least " .. max_limit
end
if distinct_consistency ~= nil then
table.insert(infobox_data, {
"Distinct consistency limit",
distinct_consistency,
})
end
-- special properties
if ET.is_highly_composite(et) or ET.is_zeta(et) then
local text = ""
if ET.is_highly_composite(et) then
text = text .. "[[Highly composite equal division|Highly composite]]"
if rat.eq(et.equave, 2) then
categories = categories
.. "[[Category:Highly composite EDOs|"
.. string.rep("#", string.len(et.size))
.. "]]"
end
end
if ET.is_zeta(et) and rat.eq(et.equave, 2) then
categories = categories
.. "[[Category:Zeta record EDOs|"
.. string.rep("#", string.len(et.size))
.. "]]"
if zeta_switch then
if #text > 0 then
text = text .. "<br>"
end
text = text .. ET.why_zeta(et)
end
end
if #text >0 then
table.insert(infobox_data, {
"Special properties",
"<div style=\"max-width: 300px;\">" .. text .. "</div>",
})
end
end
local result = infobox.build("[[" .. et.suffix .. "|" .. tuning .. "]]", infobox_data, prev_one, next_one)
if not value_provided(debug_mode) then
result = result .. categories
end
return frame:preprocess(result)
end
return p