Module:Utils
Jump to navigation
Jump to search
Documentation transcluded from /doc
Documentation transcluded from /doc
This module provides several mathematical functions which are likely to be used frequently on the Xenharmonic Wiki.
Namely, the functions in this module can be called from other modules by using require("Module:Utils")
and calling the _
-prefixed functions.
Functions
table_contains(tbl, x)
- Check if table contains x. This function is designed to be used by other modules only; it cannot be called with
{{#invoke:}}
.
index_of(array, index)
- Return the first index with the given value (or nil if not found). This function is designed to be used by other modules only; it cannot be called with
{{#invoke:}}
.
value_provided(s)
- Checks if
s
is a non-empty string. This function is designed to be used by other modules only; it cannot be called with{{#invoke:}}
.
eval_num_arg(input, def_value)
- Checks if
input
is a number; on error, usedef_value
. This function is designed to be used by other modules only; it cannot be called with{{#invoke:}}
.
log(x, b)
- Returns the logarithm base
b
ofx
. Parameterb
defaults to base 2 (octave) if it is omitted.
gcd(a, b)
- Returns the greatest common divisor of
a
andb
.
round_dec(x, places)
- Returns
x
rounded to a precision ofplaces
decimal places. Parameterplaces
defaults to 0 if it is omitted.
round(x, prec)
- Returns
x
rounded to a precision ofprec
significant figures. Parameterprec
defaults to 6 if it is omitted.
is_prime(n)
- Returns
true
if the given integern
is a prime number. This function is designed to be used by other modules only; it cannot be called with{{#invoke:}}
.
prime_factorization(n)
- Returns the prime factorization of the given integer
n
using the exponential form (in wikitext).
prime_factorization_raw(n)
- Returns a table encoding the prime factorization of
n
. This function is designed to be used by other modules only; it cannot be called with{{#invoke:}}
.
signum(x)
- Returns 1 for positive numbers, -1 for negative ones, 0 for zero and non-integer inputs. This function is designed to be used by other modules only; it cannot be called with
{{#invoke:}}
.
next_young_diagram(d)
- Returns the next Young diagram of the same size; the first one is
[N]
, the last one is[1, 1, ..., 1]
. After the last one,nil
is returned. The input table is modified. This function is designed to be used by other modules only; it cannot be called with{{#invoke:}}
.
local get_args = require("Module:Arguments").getArgs
local p = {}
-- check if a table contains x
function p.table_contains(tbl, x)
for i = 1, #tbl do
if x == tbl[i] then
return true
end
end
return false
end
-- return the first index with the given value (or nil if not found)
function p.index_of(array, value)
for i, v in ipairs(array) do
if v == value then
return i
end
end
return nil
end
-- check whether the input is a non-empty string
function p.value_provided(s)
return type(s) == "string" and #s > 0
end
-- evaluate input on error use default; cannot be used with {{#invoke:}}
function p.eval_num_arg(input, def_value)
local result = input
if type(input) ~= "number" then
result = def_value
if type(input) == "string" then
-- check for fraction notation
if input:match("/") == "/" then
local numerator, denominator = input:match("^%s*([0-9]+)[/?]([0-9]+)%s*$")
result = (tonumber(numerator) or def_value) / (tonumber(denominator) or 1)
else
input = input:match("^%s*(.-)%s*$")
result = tonumber(input)
end
end
end
return result
end
-- return logarithm base b of x
function p.log(frame)
local args = get_args(frame)
return p._log(args[1], args[2])
end
local LN_2 = math.log(2)
-- return logarithm base 2 of x
function p.log2(x)
return math.log(x) / LN_2
end
function p._log(x, b)
-- x defaults to 0
x = p.eval_num_arg(x, 0)
-- b defaults to 2 ("octave")
b = p.eval_num_arg(b, 2)
return math.log(x) / math.log(b)
end
-- return greatest common divisor of a and b
function p.gcd(frame)
local args = get_args(frame)
return p._gcd(args[1], args[2])
end
function p._gcd(a, b)
if b ~= 0 then
return p._gcd(b, a % b)
else
return math.abs(a)
end
end
-- return x rounded to places decimal places
function p.round_dec(frame)
local args = get_args(frame)
return p._round_dec(args[1], args[2])
end
function p._round_dec(x, places)
-- x defaults to 0
x = p.eval_num_arg(x, 0)
-- places defaults to 0
places = p.eval_num_arg(places, 0)
return math.floor(x * 10 ^ places + 0.5) / 10 ^ places
end
-- return x rounded to a precision of prec significant figures
function p.round(frame)
local args = get_args(frame)
return p._round(args[1], args[2])
end
function p._round(x, prec)
-- x defaults to 0
x = p.eval_num_arg(x, 0)
-- prec defaults to 6
prec = p.eval_num_arg(prec, 6)
if x == 0 then
return 0
else
return p._round_dec(x, prec - math.floor(p._log(math.abs(x), 10)) - 1)
end
end
-- cached list of primes for is_prime
local primes_cache = {
[0] = false,
[1] = false,
}
-- returns true if integer n is prime; cannot be used with {{#invoke:}}
function p.is_prime(n)
local cached = primes_cache[n]
if cached ~= nil then
return cached
end
for i = 2, math.sqrt(n) do
if n % i == 0 then
primes_cache[n] = false
return false
end
end
primes_cache[n] = true
return true
end
-- returns prime factorization of integer n > 1; cannot be used with {{#invoke:}}
-- note: the order of keys is not specified for Lua tables
function p.prime_factorization_raw(n)
local factors = {}
local m = n
for i = 2, math.sqrt(n) + 1 do
while m % i == 0 do
factors[i] = factors[i] or 0
factors[i] = factors[i] + 1
m = m / i
end
if m == 1 then
break
end
end
if m > 1 then
factors[m] = factors[m] or 1
end
return factors
end
-- returns prime factorization of integer n > 2 (with wiki markup for exponents)
function p.prime_factorization(frame)
local args = get_args(frame)
return p._prime_factorization(p.eval_num_arg(args[1], 12)) -- default to 12
end
function p._prime_factorization(n)
if n <= 1 then
return "n/a"
end
local factors, powers = {}, {}
local new_number = n
for i = 2, n do
if p.is_prime(i) then
if new_number % i == 0 then
factors[#factors + 1] = i
powers[#factors] = 0
while new_number % i == 0 do
powers[#factors] = powers[#factors] + 1
new_number = new_number / i
end
if powers[#factors] > 1 then
powers[#factors] = factors[#factors] .. "<sup>" .. powers[#factors] .. "</sup>"
else
powers[#factors] = factors[#factors]
end
end
end
if new_number == 1 then
break
end
end
return table.concat(powers, " × ")
end
-- returns signum(x); cannot be used with {{#invoke:}}
function p.signum(x)
if type(x) ~= "number" then
return 0
end
if x > 0 then
return 1
end
if x < 0 then
return -1
end
return 0
end
-- returns the next Young diagram of the same size or nil; cannot be used with {{#invoke:}}
-- modifies the input table
function p.next_young_diagram(d)
if #d == 0 then
return nil
end
local i_from = nil
local size = 0
for i = #d, 1, -1 do
if d[i] > 1 then
i_from = i
break
end
size = size + d[i]
end
if i_from == nil then
return nil
end
d[i_from] = d[i_from] - 1
size = size + 1
-- repacking the tail
local max_d = d[i_from]
for i = i_from + 1, #d + 1 do
if size >= max_d then
d[i] = max_d
size = size - max_d
elseif size > 0 then
d[i] = size
size = 0
else
d[i] = nil
end
end
return d
end
-- stylua: ignore
p.primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271}
return p