185edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 239323753 - Original comment: **
ArrowHead294 (talk | contribs)
mNo edit summary
 
(15 intermediate revisions by 9 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-29 10:54:27 UTC</tt>.<br>
 
: The original revision id was <tt>239323753</tt>.<br>
== Theory ==
: The revision comment was: <tt></tt><br>
The [[patent val]] of 185edo [[tempering out|tempers out]] [[126/125]], [[1029/1024]], [[6144/6125]] in the 7-limit, and [[243/242]] in the 11-limit, making it useful for various purposes. It is an excellent tuning for [[starling]], the [[7-limit]] [[planar temperament]] tempering out 126/125; [[valentine]], which also tempers out 1029/1024; and [[cuckoo]], tempering out 126/125 and 243/242.
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
 
<h4>Original Wikitext content:</h4>
Using the 185c val, it tempers out [[225/224]] and 1029/1024 in the 7-limit, 243/242, [[385/384]], [[441/440]], and [[540/539]] in the 11-limit, providing a great alternative to [[72edo]] for [[miracle]]. With the 185cf val {{val| 185 293 '''429''' 519 640 '''684''' }}, it makes for an excellent tuning of 13-limit [[manna]]. Meanwhile the 185cff val {{val| 185 293 '''429''' 519 640 '''686''' }} is a first-class tuning of 13-limit [[miraculous]].
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**185edo** divides the [[octave]] into 185 equal steps of size 6.4865 [[cent]]s each. It [[tempering out|tempers out]] the [[comma]]s 126/125, 1029/1024, 6144/6125 and 243/242, making it useful for various purposes. It is an excellent tuning for [[starling temperament]], the [[7-limit]] [[planar temperament]] tempering out 126/125; [[valentine temperament]], which also tempers out 1029/1024; and the rank three 89&amp;154&amp;185 temperament tempering out 126/125 and 243/242.
 
=== Odd harmonics ===
{{Harmonics in equal|185}}
 
=== Subsets and supersets ===
Since 185 factors into {{factorization|185}}, 185edo contains [[5edo]] and [[37edo]] as its subsets.


== Scales ==
== Scales ==
* [[stardene]]</pre></div>
* [[nova]]
<h4>Original HTML content:</h4>
* [[novadene]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;185edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;185edo&lt;/strong&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 185 equal steps of size 6.4865 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;s 126/125, 1029/1024, 6144/6125 and 243/242, making it useful for various purposes. It is an excellent tuning for &lt;a class="wiki_link" href="/starling%20temperament"&gt;starling temperament&lt;/a&gt;, the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; &lt;a class="wiki_link" href="/planar%20temperament"&gt;planar temperament&lt;/a&gt; tempering out 126/125; &lt;a class="wiki_link" href="/valentine%20temperament"&gt;valentine temperament&lt;/a&gt;, which also tempers out 1029/1024; and the rank three 89&amp;amp;154&amp;amp;185 temperament tempering out 126/125 and 243/242.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; Scales &lt;/h2&gt;
&lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/stardene"&gt;stardene&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Latest revision as of 14:08, 20 February 2025

← 184edo 185edo 186edo →
Prime factorization 5 × 37
Step size 6.48649 ¢ 
Fifth 108\185 (700.541 ¢)
Semitones (A1:m2) 16:15 (103.8 ¢ : 97.3 ¢)
Consistency limit 3
Distinct consistency limit 3

185 equal divisions of the octave (abbreviated 185edo or 185ed2), also called 185-tone equal temperament (185tet) or 185 equal temperament (185et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 185 equal parts of about 6.49 ¢ each. Each step represents a frequency ratio of 21/185, or the 185th root of 2.

Theory

The patent val of 185edo tempers out 126/125, 1029/1024, 6144/6125 in the 7-limit, and 243/242 in the 11-limit, making it useful for various purposes. It is an excellent tuning for starling, the 7-limit planar temperament tempering out 126/125; valentine, which also tempers out 1029/1024; and cuckoo, tempering out 126/125 and 243/242.

Using the 185c val, it tempers out 225/224 and 1029/1024 in the 7-limit, 243/242, 385/384, 441/440, and 540/539 in the 11-limit, providing a great alternative to 72edo for miracle. With the 185cf val 185 293 429 519 640 684], it makes for an excellent tuning of 13-limit manna. Meanwhile the 185cff val 185 293 429 519 640 686] is a first-class tuning of 13-limit miraculous.

Odd harmonics

Approximation of odd harmonics in 185edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -1.41 +2.88 -2.34 -2.83 +0.03 +2.72 +1.46 -1.17 +0.87 +2.73 +0.91
Relative (%) -21.8 +44.3 -36.1 -43.6 +0.5 +41.9 +22.5 -18.1 +13.3 +42.1 +14.1
Steps
(reduced)
293
(108)
430
(60)
519
(149)
586
(31)
640
(85)
685
(130)
723
(168)
756
(16)
786
(46)
813
(73)
837
(97)

Subsets and supersets

Since 185 factors into 5 × 37, 185edo contains 5edo and 37edo as its subsets.

Scales