|
|
(13 intermediate revisions by 10 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-02-23 18:04:33 UTC</tt>.<br>
| |
| : The original revision id was <tt>541891896</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This is the simplest edt with a distinct form for each rotation of the Anti-Lambda scale. It is 9edo with ~23 cent stretched octaves.and so is a stretched octave pelog scale,
| |
|
| |
|
| ||~ Degree ||~ cents ||~ notation ||
| | == Theory == |
| || 1/14 || 135.85 || Cp/D@ ||
| | 14edt is the simplest [[edt]] with a distinct form for each rotation of the [[5L 4s (3/1-equivalent)|antilambda]] scale. It can be seen as [[9edo]] with significantly [[stretched and compressed tuning|stretched]] [[octave]]s (~23{{c}}) and may be used as a tuning for [[Pelog]]. |
| || 2/14 || 271.71 || D ||
| |
| || 3/14 || 407.56 || E ||
| |
| || 4/14 || 543.42 || Ep/F@ ||
| |
| || 5/14 || 679.27 || F ||
| |
| || 6/14 || 815.12 || G ||
| |
| || 7/14 || 950.98 || Gp/H@ ||
| |
| || 8/14 || 1086.83 || H ||
| |
| || 9/14 || 1222.685 || J ||
| |
| || 10/14 || 1358.54 || Jp/A@ ||
| |
| || 11/14 || 1494.39 || A ||
| |
| || 12/14 || 1630.25 || Ap/B@ ||
| |
| || 13/14 || 1766.10 || B ||
| |
| || 14/14 || 1901.955 || C ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>14edt</title></head><body>This is the simplest edt with a distinct form for each rotation of the Anti-Lambda scale. It is 9edo with ~23 cent stretched octaves.and so is a stretched octave pelog scale,<br />
| |
| <br />
| |
|
| |
|
| | === Harmonics === |
| | {{Harmonics in equal|14|3|1|intervals=integer|columns=11}} |
| | {{Harmonics in equal|14|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14edt (continued)}} |
|
| |
|
| <table class="wiki_table">
| | === Subsets and supersets === |
| <tr>
| | Since 14 factors into primes as {{nowrap| 2 × 7 }}, 14edt has subset edts [[2edt]] and [[7edt]]. |
| <th>Degree<br />
| |
| </th>
| |
| <th>cents<br />
| |
| </th>
| |
| <th>notation<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>1/14<br />
| |
| </td>
| |
| <td>135.85<br />
| |
| </td>
| |
| <td>Cp/D@<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2/14<br />
| |
| </td>
| |
| <td>271.71<br />
| |
| </td>
| |
| <td>D<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3/14<br />
| |
| </td>
| |
| <td>407.56<br />
| |
| </td>
| |
| <td>E<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4/14<br />
| |
| </td>
| |
| <td>543.42<br />
| |
| </td>
| |
| <td>Ep/F@<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5/14<br />
| |
| </td>
| |
| <td>679.27<br />
| |
| </td>
| |
| <td>F<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6/14<br />
| |
| </td>
| |
| <td>815.12<br />
| |
| </td>
| |
| <td>G<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7/14<br />
| |
| </td>
| |
| <td>950.98<br />
| |
| </td>
| |
| <td>Gp/H@<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8/14<br />
| |
| </td>
| |
| <td>1086.83<br />
| |
| </td>
| |
| <td>H<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9/14<br />
| |
| </td>
| |
| <td>1222.685<br />
| |
| </td>
| |
| <td>J<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10/14<br />
| |
| </td>
| |
| <td>1358.54<br />
| |
| </td>
| |
| <td>Jp/A@<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11/14<br />
| |
| </td>
| |
| <td>1494.39<br />
| |
| </td>
| |
| <td>A<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12/14<br />
| |
| </td>
| |
| <td>1630.25<br />
| |
| </td>
| |
| <td>Ap/B@<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13/14<br />
| |
| </td>
| |
| <td>1766.10<br />
| |
| </td>
| |
| <td>B<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14/14<br />
| |
| </td>
| |
| <td>1901.955<br />
| |
| </td>
| |
| <td>C<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | == Intervals == |
| | {| class="wikitable center-1 right-2 right-3" |
| | |- |
| | ! # |
| | ! [[Cent]]s |
| | ! [[Hekt]]s |
| | ! Notation{{clarify}} |
| | |- |
| | | 1 |
| | | 136 |
| | | 93 |
| | | Cp/D\\ |
| | |- |
| | | 2 |
| | | 272 |
| | | 186 |
| | | D |
| | |- |
| | | 3 |
| | | 408 |
| | | 279 |
| | | E |
| | |- |
| | | 4 |
| | | 543 |
| | | 371 |
| | | Ep/F\\ |
| | |- |
| | | 5 |
| | | 679 |
| | | 464 |
| | | F |
| | |- |
| | | 6 |
| | | 815 |
| | | 557 |
| | | G |
| | |- |
| | | 7 |
| | | 951 |
| | | 650 |
| | | Gp/H\\ |
| | |- |
| | | 8 |
| | | 1087 |
| | | 743 |
| | | H |
| | |- |
| | | 9 |
| | | 1223 |
| | | 836 |
| | | J |
| | |- |
| | | 10 |
| | | 1359 |
| | | 929 |
| | | Jp/A\\ |
| | |- |
| | | 11 |
| | | 1494 |
| | | 1021 |
| | | A |
| | |- |
| | | 12 |
| | | 1630 |
| | | 1114 |
| | | Ap/B\\ |
| | |- |
| | | 13 |
| | | 1766 |
| | | 1207 |
| | | B |
| | |- |
| | | 14 |
| | | 1902 |
| | | 1300 |
| | | C |
| | |} |
| | |
| | == See also == |
| | * [[9edo]] – relative edo |
| | * [[23ed6]] – relative ed6 |
| | * [[32ed12]] – relative ed12 |
| | |
| | |
| | {{Todo|inline=1|expand}} |
| | [[Category:Pelog]] |
Prime factorization
|
2 × 7
|
Step size
|
135.854 ¢
|
Octave
|
9\14edt (1222.69 ¢)
|
Consistency limit
|
7
|
Distinct consistency limit
|
6
|
14 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 14edt or 14ed3), is a nonoctave tuning system that divides the interval of 3/1 into 14 equal parts of about 136 ¢ each. Each step represents a frequency ratio of 31/14, or the 14th root of 3.
Theory
14edt is the simplest edt with a distinct form for each rotation of the antilambda scale. It can be seen as 9edo with significantly stretched octaves (~23 ¢) and may be used as a tuning for Pelog.
Harmonics
Approximation of harmonics in 14edt
Harmonic
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
Error
|
Absolute (¢)
|
+22.7
|
+0.0
|
+45.4
|
+66.6
|
+22.7
|
+27.5
|
-67.8
|
+0.0
|
-46.5
|
+60.2
|
+45.4
|
Relative (%)
|
+16.7
|
+0.0
|
+33.4
|
+49.0
|
+16.7
|
+20.3
|
-49.9
|
+0.0
|
-34.3
|
+44.3
|
+33.4
|
Steps (reduced)
|
9 (9)
|
14 (0)
|
18 (4)
|
21 (7)
|
23 (9)
|
25 (11)
|
26 (12)
|
28 (0)
|
29 (1)
|
31 (3)
|
32 (4)
|
Approximation of harmonics in 14edt (continued)
Harmonic
|
13
|
14
|
15
|
16
|
17
|
18
|
19
|
20
|
21
|
22
|
23
|
24
|
Error
|
Absolute (¢)
|
+42.7
|
+50.2
|
+66.6
|
-45.1
|
-14.2
|
+22.7
|
+64.9
|
-23.9
|
+27.5
|
-53.0
|
+5.9
|
-67.8
|
Relative (%)
|
+31.4
|
+37.0
|
+49.0
|
-33.2
|
-10.5
|
+16.7
|
+47.8
|
-17.6
|
+20.3
|
-39.0
|
+4.3
|
-49.9
|
Steps (reduced)
|
33 (5)
|
34 (6)
|
35 (7)
|
35 (7)
|
36 (8)
|
37 (9)
|
38 (10)
|
38 (10)
|
39 (11)
|
39 (11)
|
40 (12)
|
40 (12)
|
Subsets and supersets
Since 14 factors into primes as 2 × 7, 14edt has subset edts 2edt and 7edt.
Intervals
#
|
Cents
|
Hekts
|
Notation[clarification needed]
|
1
|
136
|
93
|
Cp/D\\
|
2
|
272
|
186
|
D
|
3
|
408
|
279
|
E
|
4
|
543
|
371
|
Ep/F\\
|
5
|
679
|
464
|
F
|
6
|
815
|
557
|
G
|
7
|
951
|
650
|
Gp/H\\
|
8
|
1087
|
743
|
H
|
9
|
1223
|
836
|
J
|
10
|
1359
|
929
|
Jp/A\\
|
11
|
1494
|
1021
|
A
|
12
|
1630
|
1114
|
Ap/B\\
|
13
|
1766
|
1207
|
B
|
14
|
1902
|
1300
|
C
|
See also
|
Todo: expand
|