29edt: Difference between revisions
Jump to navigation
Jump to search
Tags: Mobile edit Mobile web edit |
m Removing from Category:Edonoi using Cat-a-lot |
||
(12 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
'''29EDT''' is the [[Edt|equal division of the third harmonic]] into 29 parts of 65.5847 [[cent|cents]] each, corresponding to 18.2970 [[edo]]. It is related to the | {{Infobox ET}} | ||
'''29EDT''' is the [[Edt|equal division of the third harmonic]] into 29 parts of 65.5847 [[cent|cents]] each, corresponding to 18.2970 [[edo]]. It is related to the [[Metric microtemperaments #Luminal|luminal temperament]]. | |||
{| class="wikitable" | While not possessing good approximations to most integer harmonics, it does have a few very good rational intervals: notably [[27/26]], [[17/10]], [[45/32]], and [[11/6]]. | ||
==Intervals== | |||
{| class="wikitable right-2 right-3" | |||
|- | |- | ||
! | ! steps | ||
! | ! [[cent]]s | ||
! | ! [[hekt]]s | ||
! | ! corresponding <br>JI intervals | ||
! comments | |||
|- | |- | ||
! colspan="3" | 0 | |||
| | | [[1/1]] | ||
| | |||
|- | |- | ||
| 1 | |||
| 65.5847 | |||
| | [[27/26]] | | 44.8276 | ||
| [[27/26]] | |||
| | |||
|- | |- | ||
| 2 | |||
| 131.1693 | |||
| | | | 89.6552 | ||
| 14/13, 27/25, 55/51 | |||
| | |||
|- | |- | ||
| 3 | |||
| 196.7540 | |||
| | [[28/25]] | | 134.4828 | ||
| | | 9/8, [[28/25]] | ||
| pseudo-[[10/9]] | |||
|- | |- | ||
| 4 | |||
| 262.3386 | |||
| | | | 179.3103 | ||
| 7/6 | |||
| | |||
|- | |- | ||
| 5 | |||
| 327.9233 | |||
| | | | 224.1379 | ||
| | | | ||
| pseudo-[[6/5]] | |||
|- | |- | ||
| 6 | |||
| 393.5079 | |||
| | 64/51 | | 268.9655 | ||
| | | 64/51 | ||
| pseudo-[[5/4]] | |||
|- | |- | ||
| 7 | |||
| 459.0926 | |||
| | | | 313.7931 | ||
| 13/10 | |||
| | |||
|- | |- | ||
| 8 | |||
| 524.6772 | |||
| | 65/48 | | 358.6206 | ||
| 65/48, 27/20 | |||
| | |||
|- | |- | ||
| 9 | |||
| 590.2619 | |||
| | [[45/32]] | | 403.4483 | ||
| [[45/32]] | |||
| | |||
|- | |- | ||
| 10 | |||
| 655.8466 | |||
| | | | 448.2759 | ||
| 16/11 | |||
| | |||
|- | |- | ||
| 11 | |||
| 721.4312 | |||
| | | | 493.1034 | ||
| | | | ||
| pseudo-[[3/2]] | |||
|- | |- | ||
| 12 | |||
| 787.0159 | |||
| | 63/40, 52/33 | | 537.9310 | ||
| | | 63/40, 52/33 | ||
| pseudo-[[8/5]] | |||
|- | |- | ||
| 13 | |||
| 852.6005 | |||
| | [[18/11]] | | 582.7586 | ||
| | | [[18/11]] | ||
| flat pseudo-[[5/3]] | |||
|- | |- | ||
| 14 | |||
| 918.1852 | |||
| | | | 627.5862 | ||
| | | 17/10 | ||
| sharp pseudo-[[5/3]] | |||
|- | |- | ||
| 15 | |||
| 983.7698 | |||
| | | | 672.4138 | ||
| | | 30/17 | ||
| flat pseudo-[[9/5]] | |||
|- | |- | ||
| 16 | |||
| 1049.3545 | |||
| | [[11/6]] | | 717.2414 | ||
| | | [[11/6]] | ||
| sharp pseudo-[[9/5]] | |||
|- | |- | ||
| 17 | |||
| 1114.9391 | |||
| | 99/52, 40/21 | | 772.0690 | ||
| | | 99/52, 40/21 | ||
| pseudo-[[15/8]] | |||
|- | |- | ||
| 18 | |||
| 1180.5238 | |||
| | | | 806.8966 | ||
| | | | ||
| pseudooctave | |||
|- | |- | ||
| 19 | |||
| 1246.1084 | |||
| | | | 851.7241 | ||
| 33/16 | |||
| | |||
|- | |- | ||
| 20 | |||
| 1311.6931 | |||
| | [[16/15|32/15]] | | 896.5517 | ||
| [[16/15|32/15]] | |||
| | |||
|- | |- | ||
| 21 | |||
| 1377.2778 | |||
| | 144/65 | | 941.3794 | ||
| 144/65, 20/9 | |||
| | |||
|- | |- | ||
| 22 | |||
| 1442.8624 | |||
| | | | 986.2069 | ||
| | | 30/13 | ||
| pseudo-7/3 (7/6 plus pseudooctave) | |||
|- | |- | ||
| 23 | |||
| 1508.4471 | |||
| | 153/64 | | 1031.0345 | ||
| | | 153/64 | ||
| pseudo-12/5 | |||
|- | |- | ||
| 24 | |||
| 1574.0317 | |||
| | | | 1075.8621 | ||
| | | | ||
| pseudo-5/2 | |||
|- | |- | ||
| 25 | |||
| 1639.6164 | |||
| | | | 1120.6897 | ||
| 18/7 | |||
| | |||
|- | |- | ||
| 26 | |||
| 1705.2010 | |||
| | 75/28 | | 1165.5172 | ||
| | | 8/3, 75/28 | ||
| pseudo-27/10 | |||
|- | |- | ||
| 27 | |||
| 1770.7857 | |||
| | | | 1210.3448 | ||
| 39/14, 25/9, 153/55 | |||
| | |||
|- | |- | ||
| 28 | |||
| 1836.3703 | |||
| | [[13/9|26/9]] | | 1255.1724 | ||
| [[13/9|26/9]] | |||
| | |||
|- | |- | ||
| 29 | |||
| 1901.9550 | |||
| | | | 1300.0000 | ||
| [[3/1]] | |||
| [[3/2|just perfect fifth]] plus an octave | |||
|} | |} | ||
== | ==Harmonics== | ||
{{Harmonics in equal | |||
| steps = 29 | |||
| num = 3 | |||
| denom = 1 | |||
| intervals = integer | |||
}} | |||
{{Harmonics in equal | |||
| steps = 29 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
| intervals = integer | |||
}} | |||
{{todo|expand}} | |||
Latest revision as of 19:21, 1 August 2025
← 28edt | 29edt | 30edt → |
29EDT is the equal division of the third harmonic into 29 parts of 65.5847 cents each, corresponding to 18.2970 edo. It is related to the luminal temperament.
While not possessing good approximations to most integer harmonics, it does have a few very good rational intervals: notably 27/26, 17/10, 45/32, and 11/6.
Intervals
steps | cents | hekts | corresponding JI intervals |
comments |
---|---|---|---|---|
0 | 1/1 | |||
1 | 65.5847 | 44.8276 | 27/26 | |
2 | 131.1693 | 89.6552 | 14/13, 27/25, 55/51 | |
3 | 196.7540 | 134.4828 | 9/8, 28/25 | pseudo-10/9 |
4 | 262.3386 | 179.3103 | 7/6 | |
5 | 327.9233 | 224.1379 | pseudo-6/5 | |
6 | 393.5079 | 268.9655 | 64/51 | pseudo-5/4 |
7 | 459.0926 | 313.7931 | 13/10 | |
8 | 524.6772 | 358.6206 | 65/48, 27/20 | |
9 | 590.2619 | 403.4483 | 45/32 | |
10 | 655.8466 | 448.2759 | 16/11 | |
11 | 721.4312 | 493.1034 | pseudo-3/2 | |
12 | 787.0159 | 537.9310 | 63/40, 52/33 | pseudo-8/5 |
13 | 852.6005 | 582.7586 | 18/11 | flat pseudo-5/3 |
14 | 918.1852 | 627.5862 | 17/10 | sharp pseudo-5/3 |
15 | 983.7698 | 672.4138 | 30/17 | flat pseudo-9/5 |
16 | 1049.3545 | 717.2414 | 11/6 | sharp pseudo-9/5 |
17 | 1114.9391 | 772.0690 | 99/52, 40/21 | pseudo-15/8 |
18 | 1180.5238 | 806.8966 | pseudooctave | |
19 | 1246.1084 | 851.7241 | 33/16 | |
20 | 1311.6931 | 896.5517 | 32/15 | |
21 | 1377.2778 | 941.3794 | 144/65, 20/9 | |
22 | 1442.8624 | 986.2069 | 30/13 | pseudo-7/3 (7/6 plus pseudooctave) |
23 | 1508.4471 | 1031.0345 | 153/64 | pseudo-12/5 |
24 | 1574.0317 | 1075.8621 | pseudo-5/2 | |
25 | 1639.6164 | 1120.6897 | 18/7 | |
26 | 1705.2010 | 1165.5172 | 8/3, 75/28 | pseudo-27/10 |
27 | 1770.7857 | 1210.3448 | 39/14, 25/9, 153/55 | |
28 | 1836.3703 | 1255.1724 | 26/9 | |
29 | 1901.9550 | 1300.0000 | 3/1 | just perfect fifth plus an octave |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -19.5 | +0.0 | +26.6 | -31.8 | -19.5 | -24.0 | +7.2 | +0.0 | +14.4 | -19.5 | +26.6 |
Relative (%) | -29.7 | +0.0 | +40.6 | -48.4 | -29.7 | -36.6 | +10.9 | +0.0 | +21.9 | -29.7 | +40.6 | |
Steps (reduced) |
18 (18) |
29 (0) |
37 (8) |
42 (13) |
47 (18) |
51 (22) |
55 (26) |
58 (0) |
61 (3) |
63 (5) |
66 (8) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +19.2 | +22.1 | -31.8 | -12.3 | +13.9 | -19.5 | +18.1 | -5.1 | -24.0 | +26.6 | +15.3 |
Relative (%) | +29.3 | +33.7 | -48.4 | -18.8 | +21.2 | -29.7 | +27.6 | -7.8 | -36.6 | +40.6 | +23.3 | |
Steps (reduced) |
68 (10) |
70 (12) |
71 (13) |
73 (15) |
75 (17) |
76 (18) |
78 (20) |
79 (21) |
80 (22) |
82 (24) |
83 (25) |