17edf: Difference between revisions
Jump to navigation
Jump to search
expanded by a few words, added (housekeeping) categories |
m add todo:expand, improve misleading linking, make table collapsible |
||
(12 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
''' | {{Infobox ET}} | ||
'''17EDF''' is the [[EDF|Division of the just perfect fifth]] into 17 equal parts. It is related to [[29edo]], but with the [[3/2]] rather than the [[2/1]] being [[just]]. The [[octave]] is [[Octave shrinking|compressed]] by about 2.5474 [[cents]] and the step size is about 41.2915 cents. Unlike 29edo, it is only consistent up to the 6-[[integer-limit]], with discrepancy for the 7th harmonic. | |||
Lookalikes: [[ | Lookalikes: [[29edo]], [[46edt]] | ||
== Harmonics == | |||
{{Harmonics in equal|17|3|2|intervals=prime|columns=8}} | |||
{{Harmonics in equal|17|3|2|start=9|intervals=prime|columns=8}} | |||
[[ | == Intervals == | ||
{| class="wikitable center-all right-2 mw-collapsible" | |||
|+ Intervals of 17edf | |||
|- | |||
! Degree | |||
! Cents | |||
! Approx. ratios of the [[15-odd-limit]] | |||
|- | |||
| 0 | |||
| 0.0000 | |||
| 1/1 | |||
|- | |||
| 1 | |||
| 41.2915 | |||
| 25/24~33/32~56/55~81/80 | |||
|- | |||
| 2 | |||
| 82.5829 | |||
| 21/20 | |||
|- | |||
| 3 | |||
| 123.8744 | |||
| 16/15, 15/14, 14/13, 13/12 | |||
|- | |||
| 4 | |||
| 165.1659 | |||
| 12/11, 11/10 | |||
|- | |||
| 5 | |||
| 206.4574 | |||
| 9/8 | |||
|- | |||
| 6 | |||
| 248.7488 | |||
| 8/7, 7/6, 15/13 | |||
|- | |||
| 7· | |||
| 289.0403 | |||
| 13/11 | |||
|- | |||
| 8 | |||
| 330.3318 | |||
| 6/5, 11/9 | |||
|- | |||
| 9 | |||
| 371.6232 | |||
| 5/4, 16/13 | |||
|- | |||
| 10 | |||
| 412.9147 | |||
| 14/11 | |||
|- | |||
| 11 | |||
| 455.2062 | |||
| 9/7, 13/10 | |||
|- | |||
| 12· | |||
| 495.4976 | |||
| 4/3 | |||
|- | |||
| 13 | |||
| 536.7891 | |||
| 11/8, 15/11 | |||
|- | |||
| 14 | |||
| 578.0806 | |||
| 7/5, 18/13 | |||
|- | |||
| 15 | |||
| 619.3721 | |||
| 10/7, 13/9 | |||
|- | |||
| 16 | |||
| 660.6635 | |||
| 16/11, 22/15 | |||
|- | |||
| 17· | |||
| 701.9550 | |||
| 3/2 | |||
|- | |||
| 18 | |||
| 743.2465 | |||
| 14/9, 20/13 | |||
|- | |||
| 19 | |||
| 784.5379 | |||
| 11/7 | |||
|- | |||
| 20 | |||
| 825.8294 | |||
| 8/5, 13/8 | |||
|- | |||
| 21 | |||
| 867.1209 | |||
| 5/3, 18/11 | |||
|- | |||
| 22· | |||
| 908.4124 | |||
| 22/13 | |||
|- | |||
| 23 | |||
| 949.7038 | |||
| 7/4, 12/7, 26/15 | |||
|- | |||
| 24 | |||
| 990.9952 | |||
| 16/9 | |||
|- | |||
| 25 | |||
| 1032.3287 | |||
| 11/6, 20/11 | |||
|- | |||
| 26 | |||
| 1073.5782 | |||
| 15/8, 28/15, 13/7, 24/13 | |||
|- | |||
| 27 | |||
| 1114.8697 | |||
| 40/21 | |||
|- | |||
| 28 | |||
| 1156.1612 | |||
| 48/25~64/33~55/28 ~160/81 | |||
|- | |||
| 29 | |||
| 1197.4526 | |||
| 2/1 | |||
|- | |||
| 30 | |||
| 1238.7441 | |||
| 25/12~33/16~112/55~81/40 | |||
|- | |||
| 31 | |||
| 1280.0356 | |||
| 21/10 | |||
|- | |||
| 32 | |||
| 1321.3271 | |||
| 32/15, 15/7, 28/13, 13/6 | |||
|- | |||
| 33 | |||
| 1362.6185 | |||
| 24/11, 11/5 | |||
|- | |||
| 34 | |||
| 1403.9100 | |||
| 9/4 | |||
|} | |||
{{todo|expand}} |
Latest revision as of 08:44, 20 December 2024
← 16edf | 17edf | 18edf → |
(semiconvergent)
(semiconvergent)
17EDF is the Division of the just perfect fifth into 17 equal parts. It is related to 29edo, but with the 3/2 rather than the 2/1 being just. The octave is compressed by about 2.5474 cents and the step size is about 41.2915 cents. Unlike 29edo, it is only consistent up to the 6-integer-limit, with discrepancy for the 7th harmonic.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.5 | -2.5 | -19.8 | +17.1 | +19.1 | +19.0 | +8.7 | -18.7 |
Relative (%) | -6.2 | -6.2 | -47.9 | +41.4 | +46.3 | +45.9 | +21.1 | -45.2 | |
Steps (reduced) |
29 (12) |
46 (12) |
67 (16) |
82 (14) |
101 (16) |
108 (6) |
119 (0) |
123 (4) |
Harmonic | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | |
---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -19.1 | -7.5 | +0.9 | -16.3 | +12.4 | +12.5 | -17.6 | -19.1 |
Relative (%) | -46.2 | -18.1 | +2.3 | -39.6 | +30.0 | +30.4 | -42.6 | -46.3 | |
Steps (reduced) |
131 (12) |
141 (5) |
144 (8) |
151 (15) |
156 (3) |
158 (5) |
161 (8) |
166 (13) |
Intervals
Degree | Cents | Approx. ratios of the 15-odd-limit |
---|---|---|
0 | 0.0000 | 1/1 |
1 | 41.2915 | 25/24~33/32~56/55~81/80 |
2 | 82.5829 | 21/20 |
3 | 123.8744 | 16/15, 15/14, 14/13, 13/12 |
4 | 165.1659 | 12/11, 11/10 |
5 | 206.4574 | 9/8 |
6 | 248.7488 | 8/7, 7/6, 15/13 |
7· | 289.0403 | 13/11 |
8 | 330.3318 | 6/5, 11/9 |
9 | 371.6232 | 5/4, 16/13 |
10 | 412.9147 | 14/11 |
11 | 455.2062 | 9/7, 13/10 |
12· | 495.4976 | 4/3 |
13 | 536.7891 | 11/8, 15/11 |
14 | 578.0806 | 7/5, 18/13 |
15 | 619.3721 | 10/7, 13/9 |
16 | 660.6635 | 16/11, 22/15 |
17· | 701.9550 | 3/2 |
18 | 743.2465 | 14/9, 20/13 |
19 | 784.5379 | 11/7 |
20 | 825.8294 | 8/5, 13/8 |
21 | 867.1209 | 5/3, 18/11 |
22· | 908.4124 | 22/13 |
23 | 949.7038 | 7/4, 12/7, 26/15 |
24 | 990.9952 | 16/9 |
25 | 1032.3287 | 11/6, 20/11 |
26 | 1073.5782 | 15/8, 28/15, 13/7, 24/13 |
27 | 1114.8697 | 40/21 |
28 | 1156.1612 | 48/25~64/33~55/28 ~160/81 |
29 | 1197.4526 | 2/1 |
30 | 1238.7441 | 25/12~33/16~112/55~81/40 |
31 | 1280.0356 | 21/10 |
32 | 1321.3271 | 32/15, 15/7, 28/13, 13/6 |
33 | 1362.6185 | 24/11, 11/5 |
34 | 1403.9100 | 9/4 |