761edo: Difference between revisions
Created page with "{{Infobox ET}} {{EDO intro|761}} == Theory == 761edo is consistent to the 9-odd-limit. It tempers out 32805/32768, 420175/419904 and {{monzo|3 13 -15 4}}..." |
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|" |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
761edo is [[consistent]] to the [[9-odd-limit]]. | 761edo is [[consistent]] to the [[9-odd-limit]]. As an equal temperament, it [[tempering out|tempers out]] [[32805/32768]] in the 5-limit; [[420175/419904]] and {{monzo| 3 13 -15 4 }} in the [[7-limit]]. The equal temperament is strong in the 2.3.5.13.29.31 [[subgroup]], tempering out 32805/32768, 21141/21125, 3627/3625, [[140625/140608]] and 45349632/45287125. | ||
=== Odd harmonics === | === Odd harmonics === | ||
Line 13: | Line 13: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | |- | ||
! rowspan="2" |[[Comma list | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" |Optimal<br>8ve | ! rowspan="2" | [[Mapping]] | ||
! colspan="2" |Tuning | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
|- | ! colspan="2" | Tuning error | ||
![[TE error|Absolute]] (¢) | |- | ||
![[TE simple badness|Relative]] (%) | ! [[TE error|Absolute]] (¢) | ||
! [[TE simple badness|Relative]] (%) | |||
|- | |- | ||
| 2.3 | | 2.3 | ||
| {{monzo|-1206 761}} | | {{monzo|-1206 761}} | ||
| {{mapping|761 1206}} | | {{mapping|761 1206}} | ||
| 0.0778 | | +0.0778 | ||
| 0.0778 | | 0.0778 | ||
| 4.93 | | 4.93 | ||
Line 32: | Line 33: | ||
| 32805/32768, {{monzo|69 81 -85}} | | 32805/32768, {{monzo|69 81 -85}} | ||
| {{mapping|761 1206 1767}} | | {{mapping|761 1206 1767}} | ||
| 0.0490 | | +0.0490 | ||
| 0.0755 | | 0.0755 | ||
| 4.79 | | 4.79 | ||
Line 39: | Line 40: | ||
| 32805/32768, 420175/419904, {{monzo|3 13 -15 4}} | | 32805/32768, 420175/419904, {{monzo|3 13 -15 4}} | ||
| {{mapping|761 1206 1767 2136}} | | {{mapping|761 1206 1767 2136}} | ||
| 0.0925 | | +0.0925 | ||
| 0.0998 | | 0.0998 | ||
| 6.33 | | 6.33 | ||
Line 46: | Line 47: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Periods<br />per 8ve | |||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br> | ! Associated<br />ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 57: | Line 59: | ||
| 498.292 | | 498.292 | ||
| 4/3 | | 4/3 | ||
| [[Helmholtz]] | | [[Helmholtz (temperament)|Helmholtz]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Music == | |||
; [[Francium]] | |||
* "shortcrust" from ''wiloliquy'' (2025) – [https://open.spotify.com/track/7eX41UXoJhmlzFVe3hWP7d Spotify] | [https://francium223.bandcamp.com/track/shortcrust Bandcamp] | [https://www.youtube.com/watch?v=0vPnUo6X9IY YouTube] |
Latest revision as of 02:30, 17 April 2025
← 760edo | 761edo | 762edo → |
761 equal divisions of the octave (abbreviated 761edo or 761ed2), also called 761-tone equal temperament (761tet) or 761 equal temperament (761et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 761 equal parts of about 1.58 ¢ each. Each step represents a frequency ratio of 21/761, or the 761st root of 2.
Theory
761edo is consistent to the 9-odd-limit. As an equal temperament, it tempers out 32805/32768 in the 5-limit; 420175/419904 and [3 13 -15 4⟩ in the 7-limit. The equal temperament is strong in the 2.3.5.13.29.31 subgroup, tempering out 32805/32768, 21141/21125, 3627/3625, 140625/140608 and 45349632/45287125.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.247 | +0.020 | -0.626 | -0.493 | +0.587 | -0.055 | -0.227 | +0.695 | +0.516 | +0.704 | -0.679 |
Relative (%) | -15.6 | +1.3 | -39.7 | -31.3 | +37.3 | -3.5 | -14.4 | +44.1 | +32.7 | +44.6 | -43.1 | |
Steps (reduced) |
1206 (445) |
1767 (245) |
2136 (614) |
2412 (129) |
2633 (350) |
2816 (533) |
2973 (690) |
3111 (67) |
3233 (189) |
3343 (299) |
3442 (398) |
Subsets and supersets
761edo is the 135th prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-1206 761⟩ | [⟨761 1206]] | +0.0778 | 0.0778 | 4.93 |
2.3.5 | 32805/32768, [69 81 -85⟩ | [⟨761 1206 1767]] | +0.0490 | 0.0755 | 4.79 |
2.3.5.7 | 32805/32768, 420175/419904, [3 13 -15 4⟩ | [⟨761 1206 1767 2136]] | +0.0925 | 0.0998 | 6.33 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 316\761 | 498.292 | 4/3 | Helmholtz |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct