56edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
No edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The 56 equal division of 3, the tritave, divides it into 56 equal parts of 33.963 cents each, corresponding to 35.332 edo. It tempers out 245/243 in the 7-limit, 1331/1323 in the 11-limit and 275/273 in the 13-limit. It [[support]]s the 3.5.7.11.13 temperament with mapping [<1 5 0 1 10|, <0 -6 3 2 -13|]. 56edt is the twelfth [[The_Riemann_Zeta_Function_and_Tuning#Removing primes|no-twos zeta peak edt]].
The 56 equal division of 3, the tritave, divides it into 56 equal parts of 33.963 cents each, corresponding to 35.332 edo. It tempers out 245/243 in the 7-limit, 1331/1323 in the 11-limit and 275/273 in the 13-limit. It [[support]]s the 3.5.7.11.13 temperament with mapping [<1 5 0 1 10|, <0 -6 3 2 -13|]. It is the twelfth [[the Riemann zeta function and tuning#Removing primes|no-twos zeta peak edt]].


{{Harmonics in equal|56|3|1|intervals=odd|columns=18}}
== Harmonics ==
{{Harmonics in equal|56|3|1|intervals = prime|columns = 9}}
{{Harmonics in equal|56|3|1|start = 12|collapsed = 1|intervals = odd}}


[[Category:Edt]]
== Intervals ==
{{Interval table}}

Latest revision as of 13:06, 10 April 2025

← 55edt 56edt 57edt →
Prime factorization 23 × 7
Step size 33.9635 ¢ 
Octave 35\56edt (1188.72 ¢) (→ 5\8edt)
Consistency limit 3
Distinct consistency limit 3

The 56 equal division of 3, the tritave, divides it into 56 equal parts of 33.963 cents each, corresponding to 35.332 edo. It tempers out 245/243 in the 7-limit, 1331/1323 in the 11-limit and 275/273 in the 13-limit. It supports the 3.5.7.11.13 temperament with mapping [<1 5 0 1 10|, <0 -6 3 2 -13|]. It is the twelfth no-twos zeta peak edt.

Harmonics

Approximation of prime harmonics in 56edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) -11.3 +0.0 -1.3 -6.4 -7.8 +8.7 -14.2 -3.0 +5.9
Relative (%) -33.2 +0.0 -3.9 -19.0 -22.9 +25.6 -41.9 -8.8 +17.3
Steps
(reduced)
35
(35)
56
(0)
82
(26)
99
(43)
122
(10)
131
(19)
144
(32)
150
(38)
160
(48)
Approximation of odd harmonics in 56edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45
Error Absolute (¢) -2.6 +0.0 +12.1 -1.4 -7.8 -7.7 -2.1 +8.7 -10.0 +9.5 -1.3
Relative (%) -7.7 +0.0 +35.7 -4.2 -22.9 -22.8 -6.1 +25.6 -29.3 +27.9 -3.9
Steps
(reduced)
164
(52)
168
(0)
172
(4)
175
(7)
178
(10)
181
(13)
184
(16)
187
(19)
189
(21)
192
(24)
194
(26)

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 34 23.2
2 67.9 46.4 26/25, 27/26
3 101.9 69.6 18/17
4 135.9 92.9 27/25
5 169.8 116.1 11/10, 21/19
6 203.8 139.3
7 237.7 162.5 31/27
8 271.7 185.7 7/6
9 305.7 208.9 25/21, 31/26
10 339.6 232.1 17/14
11 373.6 255.4 26/21, 31/25
12 407.6 278.6 19/15
13 441.5 301.8 22/17
14 475.5 325 25/19
15 509.5 348.2
16 543.4 371.4 26/19
17 577.4 394.6
18 611.3 417.9 27/19
19 645.3 441.1
20 679.3 464.3
21 713.2 487.5
22 747.2 510.7
23 781.2 533.9 11/7
24 815.1 557.1
25 849.1 580.4 18/11, 31/19
26 883.1 603.6 5/3
27 917 626.8 17/10
28 951 650 19/11, 26/15, 33/19
29 984.9 673.2 23/13, 30/17
30 1018.9 696.4 9/5
31 1052.9 719.6 11/6
32 1086.8 742.9
33 1120.8 766.1 21/11
34 1154.8 789.3
35 1188.7 812.5
36 1222.7 835.7
37 1256.6 858.9 31/15
38 1290.6 882.1 19/9
39 1324.6 905.4
40 1358.5 928.6
41 1392.5 951.8 29/13
42 1426.5 975
43 1460.4 998.2
44 1494.4 1021.4
45 1528.4 1044.6
46 1562.3 1067.9
47 1596.3 1091.1
48 1630.2 1114.3 18/7
49 1664.2 1137.5
50 1698.2 1160.7
51 1732.1 1183.9 19/7, 30/11
52 1766.1 1207.1 25/9
53 1800.1 1230.4 17/6
54 1834 1253.6 26/9
55 1868 1276.8
56 1902 1300 3/1