User:Moremajorthanmajor/2L 1s (perfect fourth-equivalent): Difference between revisions
No edit summary |
|||
(17 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents). | The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents). | ||
In the fourth-repeating version of the diatonic scale, each tone has a | In the fourth-repeating version of the diatonic scale, each tone has a perfect fourth above it. The scale has one major chord and two minor chords. | ||
[[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]]. | [[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]]. | ||
==Notation== | ==Notation== | ||
There are | There are 6 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4 and a fourth has too few notes for a structure analogous to the major scale, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple, quintuple or sextuple fourth (minor seventh, tenth, thirteenth or sixteenth or diminished nineteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used. | ||
{| class="wikitable" | {| class="wikitable" | ||
|+Cents | |+Cents | ||
! | !Notation | ||
!Supersoft | !Supersoft | ||
!Soft | !Soft | ||
Line 20: | Line 20: | ||
|- | |- | ||
!Fourth | !Fourth | ||
!~11ed4/3 | !~11ed4/3 | ||
!~8ed4/3 | !~8ed4/3 | ||
Line 29: | Line 28: | ||
!~9ed4/3 | !~9ed4/3 | ||
|- | |- | ||
|Do#, Sol# | |F/C/G ut# | ||
Do#, Sol# | |||
د#, | |||
ص# | |||
|1\11, 46.154 | |1\11, 46.154 | ||
|1\8, 63.158 | |1\8, 63.158 | ||
Line 37: | Line 40: | ||
|3\12, 124.138 | |3\12, 124.138 | ||
|2\7, 141.176 | |2\7, 141.176 | ||
|3\9, 163. | |3\9, 163.636 | ||
|- | |- | ||
| Reb, Lab | | G/D/A reb | ||
Reb, Lab | |||
رb, لb | |||
|3\11, 138.462 | |3\11, 138.462 | ||
|2\8, 126.316 | |2\8, 126.316 | ||
Line 46: | Line 51: | ||
|2\12, 82.759 | |2\12, 82.759 | ||
|1\7, 70.588 | |1\7, 70.588 | ||
|1\9, 54. | |1\9, 54.545 | ||
|- | |- | ||
|'''Re, La''' | |'''G/D/A re''' | ||
'''Re, La''' | |||
'''ر, ل''' | |||
|'''4\11,''' '''184.615''' | |'''4\11,''' '''184.615''' | ||
|'''3\8,''' '''189.474''' | |'''3\8,''' '''189.474''' | ||
Line 56: | Line 63: | ||
|'''5\12,''' '''206.897''' | |'''5\12,''' '''206.897''' | ||
|'''3\7,''' '''211.765''' | |'''3\7,''' '''211.765''' | ||
|'''4\9,''' '''218. | |'''4\9,''' '''218.182''' | ||
|- | |- | ||
|Re#, La# | |G/D/A re# | ||
Re#, La# | |||
ر,# ل# | |||
|5\11, 230.769 | |5\11, 230.769 | ||
|4\8, 252.632 | | rowspan="2" |4\8, 252.632 | ||
|7\13, 270.967 | |7\13, 270.967 | ||
| | |3\5, 300 | ||
| 8\12, 331.034 | | 8\12, 331.034 | ||
|5\7, 352.941 | |5\7, 352.941 | ||
|7\9, 381. | |7\9, 381.818 | ||
|- | |- | ||
|'''Mib, Sib''' | |A/E/B mibb | ||
Mibb, Sibb | |||
مbb,تbb | |||
|6\11, 276.923 | |||
|6\13, 232.258 | |||
|2\5, 200 | |||
|4\12, 165.517 | |||
|2\7, 141.176 | |||
|2\9, 109.091 | |||
|- | |||
|'''A/E/B mib''' | |||
'''Mib, Sib''' | |||
'''مb,تb''' | |||
|'''7\11,''' '''323.077''' | |'''7\11,''' '''323.077''' | ||
|'''5\8,''' '''315.789''' | |'''5\8,''' '''315.789''' | ||
|'''8\13,''' '''309.677''' | |'''8\13,''' '''309.677''' | ||
|'''3\5,''' '''300''' | |||
|'''7\12,''' '''289.655''' | |'''7\12,''' '''289.655''' | ||
|'''4\7,''' '''282.353''' | |'''4\7,''' '''282.353''' | ||
|'''5\9,''' '''272. | |'''5\9,''' '''272.727''' | ||
|- | |- | ||
|Mi, Si | |A/E/B mi | ||
Mi, Si | |||
م, ت | |||
|8\11, 369.231 | |8\11, 369.231 | ||
|6\8, 378.947 | |6\8, 378.947 | ||
Line 85: | Line 110: | ||
|10\12, 413.793 | |10\12, 413.793 | ||
|6\7, 423.529 | |6\7, 423.529 | ||
|8\9, 436. | |8\9, 436.364 | ||
|- | |- | ||
|Mi#, Si# | |A/E/B mi# | ||
Mi#, Si# | |||
م,#ت# | |||
|9\11, 415.385 | |9\11, 415.385 | ||
| rowspan="2" |7\8, 442.105 | | rowspan="2" |7\8, 442.105 | ||
Line 97: | Line 124: | ||
|11\9, 600 | |11\9, 600 | ||
|- | |- | ||
|Dob, Solb | |F/C/G utb | ||
Dob, Solb | |||
دb, | |||
صb | |||
|10\11, 461.538 | |10\11, 461.538 | ||
|11\13, 425.806 | |11\13, 425.806 | ||
Line 104: | Line 135: | ||
|9\12, 372.414 | |9\12, 372.414 | ||
|5\7, 352.941 | |5\7, 352.941 | ||
|6\9, 327. | |6\9, 327.273 | ||
|- | |- | ||
!Do, Sol | !F/C/G ut | ||
Do, Sol | |||
د, ص | |||
!'''11\11,''' '''507.692''' | !'''11\11,''' '''507.692''' | ||
!'''8\8,''' '''505.263''' | !'''8\8,''' '''505.263''' | ||
Line 114: | Line 147: | ||
!'''12\12,''' '''496.552''' | !'''12\12,''' '''496.552''' | ||
!'''7\7,''' '''494.118''' | !'''7\7,''' '''494.118''' | ||
!'''9\9,''' '''490. | !'''9\9,''' '''490.909''' | ||
|} | |||
{| class="wikitable" | |||
|+Cents | |||
! colspan="2" |Notation | |||
!Supersoft | |||
!Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |- | ||
| | ! colspan="2" |Seventh | ||
!~11ed4/3 | |||
!~8ed4/3 | |||
!~13ed4/3 | |||
!~5ed4/3 | |||
!~12ed4/3 | |||
!~7ed4\3 | |||
!~9ed4/3 | |||
|- | |- | ||
!Mixolydian | |||
!Dorian | |||
! | |||
! | |||
! | |||
! | |||
! | |||
! | |||
! | |||
|- | |- | ||
| | | F/C/G ut# | ||
| | Sol# | ||
| | |||
| | ص# | ||
| | |G/D/A re# | ||
| | Re# | ||
| | |||
| | ر# | ||
| | |1\11, 46.154 | ||
|1\8, 63.158 | |||
|2\13, 77.419 | |||
| rowspan="2" |1\5, 100 | |||
| 3\12, 124.138 | |||
|2\7, 141.176 | |||
|3\9, 163.636 | |||
|- | |- | ||
| | |G/D/A reb | ||
| | Lab | ||
| | |||
| | لb | ||
| | |A/E/B mib | ||
| | Mib | ||
| | مb | ||
| | |3\11, 138.462 | ||
|2\8, 126.316 | |||
|3\13, 116.129 | |||
|2\12, 82.759 | |||
|1\7, 70.588 | |||
|1\9, 54.545 | |||
|- | |- | ||
|''' | |'''G/D/A re''' | ||
|''' | '''La''' | ||
|''' | |||
|''' | ل | ||
|''' | |'''A/E/B mi''' | ||
|''' | '''Mi''' | ||
|''' | |||
|''' | م | ||
|'''4\11,''' '''184.615''' | |||
|'''3\8,''' '''189.474''' | |||
|'''5\13,''' '''193.548''' | |||
|'''2\5,''' '''200''' | |||
|'''5\12,''' '''206.897''' | |||
|'''3\7,''' '''211.765''' | |||
|'''4\9,''' '''218.182''' | |||
|- | |- | ||
| | |G/D/A re# | ||
|Mi | La# | ||
| | |||
| | ل# | ||
| | | A/E/B mi# | ||
| | Mi# | ||
| | |||
| | م# | ||
| | |5\11, 230.769 | ||
| rowspan="2" |4\8, 252.632 | |||
| 7\13, 270.967 | |||
|3\5, 300 | |||
|8\12, 331.034 | |||
|5\7, 352.941 | |||
|7\9, 381.818 | |||
|- | |- | ||
| | |A/E/B mibb | ||
| | Sibb | ||
| | |||
تbb | |||
| | |B/F/C fab | ||
| | Fab | ||
| | |||
| | فb | ||
| | |6\11, 276.923 | ||
|6\13, 232.258 | |||
|2\5, 200 | |||
|4\12, 165.517 | |||
|2\7, 141.176 | |||
|2\9, 109.091 | |||
|- | |- | ||
| | |'''A/E/B mib''' | ||
| | '''Sib''' | ||
| | |||
| | تb | ||
| | |'''B/F/C fa''' | ||
| | '''Fa''' | ||
| | |||
| | '''ف''' | ||
|'''7\11,''' '''323.077''' | |||
|'''5\8,''' '''315.789''' | |||
|'''8\13,''' '''309.677''' | |||
|'''3\5,''' '''300''' | |||
|'''7\12,''' '''289.655''' | |||
|'''4\7,''' '''282.353''' | |||
|'''5\9,''' '''272.727''' | |||
|- | |||
|A/E/B mi | |||
Si | |||
ت | |||
|B/F/C fa# | |||
Fa# | |||
ف# | |||
| 8\11, 369.231 | |||
|6\8, 378.947 | |||
|10\13, 387.097 | |||
|4\5, 400 | |||
|10\12, 413.793 | |||
|6\7, 423.529 | |||
|8\9, 436.364 | |||
|- | |- | ||
|A/E/B mi# | |||
Si# | |||
ت# | |||
|B/F/C fax | |||
Fax | |||
فx | |||
|9\11, 415.385 | |||
| rowspan="2" |7\8, 442.105 | |||
|12\13, 464.516 | |||
|5\5, 500 | |||
|13\12, 537.069 | |||
|8\7, 564.705 | |||
|11\9, 600 | |||
|- | |- | ||
| B/F/C fab | |||
Dob | |||
دb | |||
|C/G/D solb | |||
Solb | |||
صb | |||
|10\11, 461.538 | |||
|11\13, 425.806 | |||
|4\5, 400 | |||
|9\12, 372.414 | |||
|5\7, 352.941 | |||
|6\9, 327.273 | |||
|- | |- | ||
!B/F/C fa | |||
Do | |||
د | |||
!C/G/D sol | |||
Sol | |||
ص | |||
!'''11\11,''' '''507.692''' | |||
!'''8\8,''' '''505.263''' | |||
!'''13\13,''' '''503.226''' | |||
!5\5, 500 | |||
!'''12\12,''' '''496.552''' | |||
!'''7\7,''' '''494.118''' | |||
!'''9\9,''' '''490.909''' | |||
|- | |- | ||
| | |B/F/C fa# | ||
| | Do# | ||
| | |||
| | د# | ||
| | | C/G/D sol# | ||
|2\12, | Sol# | ||
| | |||
| | ص# | ||
|12\11, 553.846 | |||
|9\8, 568.421 | |||
|15\13, 580.645 | |||
| rowspan="2" |6\5, 600 | |||
|15\12, 620.690 | |||
|9\7, 635.294 | |||
|12\9, 654.545 | |||
|- | |- | ||
| | |C/G/D solb | ||
Reb | |||
| | |||
| | رb | ||
| | |D/A/E lab | ||
| | Lab | ||
| | لb | ||
| | |14\11, 646.154 | ||
|10\8, 631.579 | |||
|16\13, 619.355 | |||
|14\12, 579.310 | |||
|8\7, 564.706 | |||
|10\9, 545.455 | |||
|- | |- | ||
| | |'''C/G/D sol''' | ||
'''Re''' | |||
| | |||
| | ر | ||
| | |'''D/A/E la''' | ||
'''La''' | |||
| | |||
| | ل | ||
| | |'''15\11,''' '''692.308''' | ||
|'''11\8''' '''694.737''' | |||
|'''18\13,''' '''696.774''' | |||
|'''7\5,''' '''700''' | |||
|'''17\12,''' '''703.448''' | |||
|'''10\7,''' '''705.882''' | |||
|'''13\9,''' '''709.091''' | |||
|- | |- | ||
| | |C/G/D sol# | ||
| | Re# | ||
| | |||
| | د# | ||
|'''8\ | |D/A/E la# | ||
| | La# | ||
| | |||
| | ل# | ||
|16\11, 738.462 | |||
|12\8, 757.895 | |||
|20\13, 774.294 | |||
| rowspan="2" |'''8\5,''' '''800''' | |||
|20\12, 827.586 | |||
|12\7, 847.059 | |||
|16\9, 872.727 | |||
|- | |- | ||
|A | |'''D/A/E lab''' | ||
'''Mib''' | |||
| | |||
| | مb | ||
| | |'''E/B/F síb''' | ||
| | '''Sib''' | ||
| | تb | ||
| | |'''18\11,''' '''830.769''' | ||
|'''13\8,''' '''821.053''' | |||
|'''21\13,''' '''812.903''' | |||
|'''19\12,''' '''786.207''' | |||
|'''11\7,''' '''776.471''' | |||
|'''14\9,''' '''763.636''' | |||
|- | |- | ||
|A | |D/A/E la | ||
Mi | |||
| | |||
| | م | ||
| | |E/B/F sí | ||
| | Si | ||
| | |||
| | ت | ||
| | |19\11, 876.923 | ||
|14\8, 884.211 | |||
|23\13, 890.323 | |||
|9\5, 900 | |||
|22\12, 910.345 | |||
|13\7, 917.647 | |||
|17\9, 927.727 | |||
|- | |- | ||
| | |D/A/E la# | ||
| | Mi# | ||
| | |||
| | م# | ||
| | |E/B/F sí# | ||
| | Si# | ||
| | |||
| | ت# | ||
|20\11, 923.077 | |||
| rowspan="2" |15\8, 947.378 | |||
|25\13, 967.742 | |||
|10\5, 1000 | |||
|25\12, 1034.483 | |||
|15\7, 1058.824 | |||
|20\9, 1090.909 | |||
|- | |- | ||
|F/C/G utb | |||
Solb | |||
صb | |||
|G/D/A reb | |||
Reb | |||
رb | |||
|21\11, 969.231 | |||
|24\13, 929.033 | |||
|9\5, 900 | |||
|21\12, 868.966 | |||
|11\7, 776.471 | |||
|15\9, 818.182 | |||
|- | |- | ||
!F/C/G ut | |||
Sol | |||
ص | |||
!G/D/A re | |||
Re | |||
ر | |||
!22\11, 1015.385 | |||
! 16\8, 1010.526 | |||
! 26\13, 1006.452 | |||
!10\5, 1000 | |||
!24\12, 993.103 | |||
!14\7, 988.235 | |||
!18\9, 981.818 | |||
|} | |||
{| class="wikitable" | |||
!Notation | |||
!Supersoft | |||
!Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |- | ||
!Mahur | |||
!~11ed4/3 | |||
!~8ed4/3 | |||
!~13ed4/3 | |||
!~5ed4/3 | |||
!~12ed4/3 | |||
!~7ed4\3 | |||
! ~9ed4/3 | |||
|- | |- | ||
| | |G# | ||
| | |1\11, 46.154 | ||
|1\8, 63.158 | |||
| | |2\13, 77.419 | ||
| | | rowspan="2" |1\5, 100 | ||
| | |3\12, 124.138 | ||
| | |2\7, 141.176 | ||
| | |3\9, 163.636 | ||
| | |||
|- | |- | ||
| | |Jf, Af | ||
| | |3\11, 138.462 | ||
|2\8, 126.316 | |||
| | |3\13, 116.129 | ||
| | |2\12, 82.759 | ||
| | |1\7, 70.588 | ||
|1\9, 54.545 | |||
| | |||
| | |||
|- | |- | ||
|''' | |'''J, A''' | ||
|''' | |'''4\11,''' '''184.615''' | ||
|''' | |'''3\8,''' '''189.474''' | ||
|'''13 | |'''5\13,''' '''193.548''' | ||
|''' | |'''2\5,''' '''200''' | ||
|''' | |'''5\12,''' '''206.897''' | ||
|''' | |'''3\7,''' '''211.765''' | ||
|''' | |'''4\9,''' '''218.182''' | ||
|- | |- | ||
| | | J#, A# | ||
|5 | |5\11, 230.769 | ||
|4\8, 252.632 | |||
| | |7\13, 270.968 | ||
| | | rowspan="2" |'''3\5,''' '''300''' | ||
| | |8\12, 331.034 | ||
| | |5\7, 352.941 | ||
| | |7\9, 381.818 | ||
| | |||
|- | |- | ||
| | |'''Af, Bf''' | ||
| | |'''7\11,''' '''323.077''' | ||
|'''5\8,''' '''315.789''' | |||
| | |'''8\13,''' '''309.677''' | ||
| | |'''7\12,''' '''289.655''' | ||
| | |'''4\7,''' '''282.353''' | ||
|'''5\9,''' '''272.727''' | |||
| | |||
| | |||
|- | |- | ||
| | |A, B | ||
| | |8\11, 369.231 | ||
| | |6\8, 378.947 | ||
| | |10\13, 387.097 | ||
| | |4\5, 400 | ||
| | |10\12, 413.793 | ||
| | |6\7, 423.529 | ||
| | |8\9, 436.364 | ||
|- | |- | ||
|A#, B# | |||
|9\11, 415.385 | |||
| rowspan="2" |7\8, 442.105 | |||
|12\13, 464.516 | |||
|5\5, 500 | |||
|13\12, 537.069 | |||
|8\7, 564.705 | |||
|11\9, 600 | |||
|- | |- | ||
| | |Bb, Cf | ||
| | |10\11, 461.538 | ||
|11\13, 425.806 | |||
| | |4\5, 400 | ||
|9\12, 372.414 | |||
| | |5\7, 352.941 | ||
| | |6\9, 327.273 | ||
| | |||
| | |||
|- | |- | ||
!B, C | |||
!'''11\11,''' '''507.692''' | |||
!'''8\8,''' '''505.263''' | |||
!'''13\13,''' '''503.226''' | |||
!5\5, 500 | |||
!'''12\12,''' '''496.552''' | |||
!'''7\7,''' '''494.118''' | |||
!'''9\9,''' '''490.909''' | |||
|- | |- | ||
| | |B#, C# | ||
| | |12\11, 553.846 | ||
|9\8, 568.421 | |||
| | |15\13, 580.645 | ||
| | | rowspan="2" |6\5, 600 | ||
| | |15\12, 620.690 | ||
| | | 9\7, 635.294 | ||
| | | 12\9, 654.545 | ||
| | |||
|- | |- | ||
| | |Cf, Qf | ||
|14\11, 646.154 | |||
| | |10\8, 631.579 | ||
| | |16\13, 619.355 | ||
| | |14\12, 579.310 | ||
|8\7, 564.706 | |||
| | | 10\9, 545.455 | ||
| | |||
| | |||
|- | |- | ||
|''' | |'''C, Q''' | ||
|''' | |'''15\11,''' '''692.308''' | ||
|''' | |'''11\8''' '''694.737''' | ||
|''' | |'''18\13,''' '''696.774''' | ||
|''' | |'''7\5,''' '''700''' | ||
|''' | |'''17\12,''' '''703.448''' | ||
|''' | |'''10\7,''' '''705.882''' | ||
|''' | |'''13\9,''' '''709.091''' | ||
|- | |- | ||
| | |C#, Q# | ||
|16\11, 738.462 | |||
| | |12\8, 757.895 | ||
| | |20\13, 774.194 | ||
| | | rowspan="2" |'''8\5,''' '''800''' | ||
| | |20\12, 827.586 | ||
| | |12\7, 847.059 | ||
| | |16\9, 872.727 | ||
| | |||
|- | |- | ||
| | |'''Qf, Df''' | ||
|'''18\11,''' '''830.769''' | |||
| | |'''13\8,''' '''821.053''' | ||
| | |'''21\13,''' '''812.903''' | ||
| | |'''19\12,''' '''786.207''' | ||
| | |'''11\7,''' '''776.471''' | ||
|'''14\9,''' '''763.636''' | |||
| | |||
| | |||
|- | |- | ||
| | |Q, D | ||
| | |19\11, 876.923 | ||
| | |14\8, 884.211 | ||
| | |23\13, 890.323 | ||
| | |9\5, 900 | ||
| | |22\12, 910.345 | ||
| | |13\7, 917.647 | ||
| | | 17\9, 927.727 | ||
|- | |- | ||
|Q#, D# | |||
|20\11, 923.077 | |||
| rowspan="2" |15\8, 947.368 | |||
|25\13, 967.742 | |||
| 10\5, 1000 | |||
|25\12, 1034.483 | |||
| 15\7, 1058.824 | |||
| 20\9, 1090.909 | |||
|- | |- | ||
| | |Df, Sf | ||
| 21\11, 969.231 | |||
| | |24\13, 929.033 | ||
| | |9\5, 900 | ||
|21\12, 868.966 | |||
| | |11\7, 776.471 | ||
| | |15\9, 818.182 | ||
| | |||
| | |||
|- | |- | ||
!D, S | |||
!22\11, 1015.385 | |||
!16\8, 1010.526 | |||
!26\13, 1006.452 | |||
!10\5, 1000 | |||
!24\12, 993.103 | |||
!14\7, 988.235 | |||
!18\9, 981.818 | |||
|- | |- | ||
| | |D#, S# | ||
| | |23\11, 1061.538 | ||
|17\8, 1073.684 | |||
| | |28\13, 1083.871 | ||
| | | rowspan="2" |11\5, 1100 | ||
| | |27\12, 1117.241 | ||
| | |16\7, 1129.412 | ||
| | |21\9, 1145.455 | ||
| | |||
|- | |- | ||
| | |Ef | ||
|25\11, 1153.846 | |||
| | |18\8, 1136.842 | ||
| | |29\13, 1122.581 | ||
| | |26\12, 1075.862 | ||
| | |15\7, 1058.824 | ||
|19\9, 1036.364 | |||
| | |||
| | |||
|- | |- | ||
|''' | |'''E''' | ||
|''' | |'''26\11,''' '''1200''' | ||
|''' | |'''19\8,''' '''1200''' | ||
|''' | |'''31\13,''' '''1200''' | ||
|''' | |'''12\5,''' '''1200''' | ||
|''' | |'''29\12,''' '''1200''' | ||
|''' | |'''17\7,''' '''1200''' | ||
|''' | |'''22\9,''' '''1200''' | ||
|- | |- | ||
|E# | |||
|E | |27\11, 1246.154 | ||
| | |20\8, 1263.158 | ||
| | |33\13, 1277.419 | ||
| | | rowspan="2" |'''13\5,''' '''1300''' | ||
| | |32\12, 1324.138 | ||
| | |19\7, 1341.176 | ||
| | |25\9, 1363.636 | ||
| | |||
|- | |- | ||
| | |'''Ff''' | ||
| | |'''29\11,''' '''1338.462''' | ||
|'''21\8,''' '''1326.316''' | |||
| | |'''34\13,''' '''1316.129''' | ||
| | |'''31\12,''' '''1282.759''' | ||
| | |'''18\7,''' '''1270.588''' | ||
|'''23\9,''' '''1254.545''' | |||
| | |||
| | |||
|- | |- | ||
| | |F | ||
| | |30\11, 1384.615 | ||
| | |22\8, 1389.474 | ||
| | |36\13, 1393.548 | ||
| | |14\5, 1400 | ||
| | |34\12, 1406.897 | ||
| | |20\7, 1411.765 | ||
| | | 26\9, 1418.182 | ||
|- | |- | ||
|F# | |||
|31\11, 1430.769 | |||
| rowspan="2" |23\8, 1452.632 | |||
|38\13, 1470.968 | |||
|15\5, 1500 | |||
|37\12, 1531.034 | |||
|22\7, 1552.941 | |||
| 29\9, 1581.818 | |||
|- | |- | ||
! | |Gf | ||
! | |32\11, 1476.923 | ||
|37\13, 1432.258 | |||
|14\5, 1400 | |||
|33\12, 1365.517 | |||
|19\7, 1341.176 | |||
|24\9, 1309.091 | |||
|- | |||
!G | |||
!33\11, 1523.077 | |||
!24\8, 1515.789 | |||
!39\13, 1509.677 | |||
!15\5, 1500 | |||
!36\12, 1489.655 | |||
!21\7, 1482.353 | |||
!27\9, 1472.727 | |||
|} | |||
{| class="wikitable" | |||
!Notation | |||
! Supersoft | |||
!Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |||
!Bijou | |||
!~11ed4/3 | !~11ed4/3 | ||
!~8ed4/3 | ! ~8ed4/3 | ||
!~13ed4/3 | !~13ed4/3 | ||
!~5ed4/3 | !~5ed4/3 | ||
!~12ed4/3 | !~12ed4/3 | ||
! ~7ed4\3 | !~7ed4\3 | ||
!~9ed4/3 | !~9ed4/3 | ||
|- | |- | ||
| | |0#, E# | ||
|1\11, 46.154 | |1\11, 46.154 | ||
|1\8, 63.158 | |1\8, 63.158 | ||
Line 599: | Line 758: | ||
|3\12, 124.138 | |3\12, 124.138 | ||
|2\7, 141.176 | |2\7, 141.176 | ||
|3\9, 163. | | 3\9, 163.636 | ||
|- | |- | ||
| | |1b, 1d | ||
|3\11, 138.462 | |||
| 3\11, 138.462 | |||
|2\8, 126.316 | |2\8, 126.316 | ||
|3\13, 116.129 | |3\13, 116.129 | ||
|2\12, 82.759 | | 2\12, 82.759 | ||
|1\7, 70.588 | |1\7, 70.588 | ||
|1\9, 54. | |1\9, 54.545 | ||
|- | |- | ||
|'''1''' | |'''1''' | ||
|'''4\11,''' '''184.615''' | |'''4\11,''' '''184.615''' | ||
Line 618: | Line 775: | ||
|'''5\12,''' '''206.897''' | |'''5\12,''' '''206.897''' | ||
|'''3\7,''' '''211.765''' | |'''3\7,''' '''211.765''' | ||
|'''4\9,''' '''218. | |'''4\9,''' '''218.182''' | ||
|- | |- | ||
|1# | |1# | ||
| 5\11, 230.769 | |5\11, 230.769 | ||
| 4\8, 252.632 | |4\8, 252.632 | ||
|7\13, 270. | |7\13, 270.968 | ||
| rowspan="2" |'''3\5,''' '''300''' | | rowspan="2" |'''3\5,''' '''300''' | ||
|8\12, 331.034 | |8\12, 331.034 | ||
|5\7, 352.941 | |5\7, 352.941 | ||
| 7\9, 381. | |7\9, 381.818 | ||
|- | |- | ||
|''' | |'''2b, 2d''' | ||
|'''7\11,''' '''323.077''' | |'''7\11,''' '''323.077''' | ||
|'''5\8,''' '''315.789''' | |'''5\8,''' '''315.789''' | ||
Line 637: | Line 792: | ||
|'''7\12,''' '''289.655''' | |'''7\12,''' '''289.655''' | ||
|'''4\7,''' '''282.353''' | |'''4\7,''' '''282.353''' | ||
|'''5\9,''' '''272. | |'''5\9,''' '''272.727''' | ||
|- | |- | ||
| | |2 | ||
|8\11, 369.231 | |||
| 8\11, 369.231 | |||
|6\8, 378.947 | |6\8, 378.947 | ||
|10\13, 387. | |10\13, 387.097 | ||
|4\5, 400 | |4\5, 400 | ||
|10\12, 413.793 | |10\12, 413.793 | ||
|6\7, 423.529 | |6\7, 423.529 | ||
|8\9, 436. | |8\9, 436.364 | ||
|- | |- | ||
|2# | |||
| 2# | |9\11, 415.385 | ||
| 9\11, 415.385 | | rowspan="2" |7\8, 442.105 | ||
| rowspan="2" | 7\8, 442.105 | |12\13, 464.516 | ||
| 12\13, 464.516 | |||
|5\5, 500 | |5\5, 500 | ||
|13\12, 537.069 | |13\12, 537.069 | ||
Line 659: | Line 812: | ||
|11\9, 600 | |11\9, 600 | ||
|- | |- | ||
| | |3b, 3d | ||
|10\11, 461.538 | |10\11, 461.538 | ||
|11\13, 425.806 | |11\13, 425.806 | ||
|4\5, 400 | |4\5, 400 | ||
|9\12, 372.414 | |9\12, 372.414 | ||
| 5\7, 352.941 | |5\7, 352.941 | ||
|6\9, 327. | |6\9, 327.273 | ||
|- | |- | ||
!3 | !3 | ||
!'''11\11,''' '''507.692''' | !'''11\11,''' '''507.692''' | ||
!'''8\8,''' '''505.263''' | !'''8\8,''' '''505.263''' | ||
!'''13\13,''' '''503.226''' | !'''13\13,''' '''503.226''' | ||
! 5\5, 500 | !5\5, 500 | ||
!'''12\12,''' '''496.552''' | !'''12\12,''' '''496.552''' | ||
!'''7\7,''' '''494.118''' | !'''7\7,''' '''494.118''' | ||
!'''9\9,''' '''490. | !'''9\9,''' '''490.909''' | ||
|- | |- | ||
|3# | |||
| 3# | |||
|12\11, 553.846 | |12\11, 553.846 | ||
| 9\8, 568.421 | |9\8, 568.421 | ||
|15\13, 580.645 | |15\13, 580.645 | ||
| rowspan="2" | 6\5, 600 | | rowspan="2" |6\5, 600 | ||
| 15\12, 620.690 | |15\12, 620.690 | ||
|9\7, 635.294 | |9\7, 635.294 | ||
|12\9, 654. | |12\9, 654.545 | ||
|- | |- | ||
| | |4b, 4d | ||
|14\11, 646.154 | |14\11, 646.154 | ||
|10\8, 631.579 | |10\8, 631.579 | ||
Line 695: | Line 844: | ||
|14\12, 579.310 | |14\12, 579.310 | ||
|8\7, 564.706 | |8\7, 564.706 | ||
|10\9, 545. | |10\9, 545.455 | ||
|- | |- | ||
|'''4''' | |'''4''' | ||
|'''15\11,''' '''692.308''' | |'''15\11,''' '''692.308''' | ||
Line 705: | Line 853: | ||
|'''17\12,''' '''703.448''' | |'''17\12,''' '''703.448''' | ||
|'''10\7,''' '''705.882''' | |'''10\7,''' '''705.882''' | ||
|'''13\9,''' '''709. | |'''13\9,''' '''709.091''' | ||
|- | |- | ||
|4# | |4# | ||
|16\11, 738.462 | |16\11, 738.462 | ||
Line 714: | Line 861: | ||
| rowspan="2" |'''8\5,''' '''800''' | | rowspan="2" |'''8\5,''' '''800''' | ||
|20\12, 827.586 | |20\12, 827.586 | ||
| 12\7, 847.059 | |12\7, 847.059 | ||
|16\9, 872. | |16\9, 872.727 | ||
|- | |- | ||
|''' | |'''5b, 5d''' | ||
|'''18\11,''' '''830.769''' | |'''18\11,''' '''830.769''' | ||
|'''13\8,''' '''821.053''' | |'''13\8,''' '''821.053''' | ||
Line 724: | Line 870: | ||
|'''19\12,''' '''786.207''' | |'''19\12,''' '''786.207''' | ||
|'''11\7,''' '''776.471''' | |'''11\7,''' '''776.471''' | ||
|'''14\9,''' '''763. | |'''14\9,''' '''763.636''' | ||
|- | |- | ||
| | |5 | ||
|19\11, 876.923 | |19\11, 876.923 | ||
|14\8, 884.211 | |14\8, 884.211 | ||
Line 734: | Line 879: | ||
|22\12, 910.345 | |22\12, 910.345 | ||
|13\7, 917.647 | |13\7, 917.647 | ||
|17\9, 927. | |17\9, 927.727 | ||
|- | |- | ||
|5# | |5# | ||
|20\11, 923.077 | |20\11, 923.077 | ||
| rowspan="2" | 15\8, 947.368 | | rowspan="2" |15\8, 947.368 | ||
|25\13, 967.742 | |25\13, 967.742 | ||
|10\5, 1000 | |10\5, 1000 | ||
|25\12, 1034.483 | |25\12, 1034.483 | ||
|15\7, 1058.824 | |15\7, 1058.824 | ||
|20\9, 1090. | |20\9, 1090.909 | ||
|- | |- | ||
| | |6b, 6d | ||
|21\11, 969.231 | |21\11, 969.231 | ||
|24\13, 929. | |24\13, 929.033 | ||
|9\5, 900 | | 9\5, 900 | ||
|21\12, 868.966 | |21\12, 868.966 | ||
|11\7, 776.471 | |11\7, 776.471 | ||
|15\9, 818. | |15\9, 818.182 | ||
|- | |- | ||
!6 | !6 | ||
!22\11, 1015.385 | !22\11, 1015.385 | ||
Line 763: | Line 905: | ||
!24\12, 993.103 | !24\12, 993.103 | ||
!14\7, 988.235 | !14\7, 988.235 | ||
!18\9, 981. | !18\9, 981.818 | ||
|- | |- | ||
|6# | |6# | ||
|23\11, 1061.538 | |23\11, 1061.538 | ||
Line 773: | Line 914: | ||
|27\12, 1117.241 | |27\12, 1117.241 | ||
|16\7, 1129.412 | |16\7, 1129.412 | ||
|21\9, 1145. | |21\9, 1145.455 | ||
|- | |- | ||
| | |7b, 7d | ||
| 25\11, 1153.846 | |||
|25\11, 1153.846 | |||
|18\8, 1136.842 | |18\8, 1136.842 | ||
|29\13, 1122.581 | |29\13, 1122.581 | ||
| 26\12, 1075.862 | |26\12, 1075.862 | ||
|15\7, 1058.824 | |15\7, 1058.824 | ||
|19\9, 1036. | |19\9, 1036.364 | ||
|- | |- | ||
|''' | |'''7''' | ||
|'''26\11,''' '''1200''' | |'''26\11,''' '''1200''' | ||
|'''19\8,''' '''1200''' | |'''19\8,''' '''1200''' | ||
Line 794: | Line 933: | ||
|'''22\9,''' '''1200''' | |'''22\9,''' '''1200''' | ||
|- | |- | ||
|7# | |7# | ||
|27\11, 1246.154 | |27\11, 1246.154 | ||
Line 802: | Line 940: | ||
|32\12, 1324.138 | |32\12, 1324.138 | ||
|19\7, 1341.176 | |19\7, 1341.176 | ||
|25\9, 1363. | |25\9, 1363.636 | ||
|- | |- | ||
|''' | |'''8b, Gd''' | ||
|'''29\11,''' '''1338.462''' | |'''29\11,''' '''1338.462''' | ||
|'''21\8,''' '''1326.316''' | |'''21\8,''' '''1326.316''' | ||
Line 811: | Line 948: | ||
|'''31\12,''' '''1282.759''' | |'''31\12,''' '''1282.759''' | ||
|'''18\7,''' '''1270.588''' | |'''18\7,''' '''1270.588''' | ||
|'''23\9,''' '''1254. | |'''23\9,''' '''1254.545''' | ||
|- | |- | ||
| | |8, G | ||
|30\11, 1384.615 | |30\11, 1384.615 | ||
|22\8, 1389.474 | |22\8, 1389.474 | ||
Line 821: | Line 957: | ||
|34\12, 1406.897 | |34\12, 1406.897 | ||
|20\7, 1411.765 | |20\7, 1411.765 | ||
|26\9, 1418. | |26\9, 1418.182 | ||
|- | |- | ||
| | |8#, G# | ||
|31\11, 1430.769 | |||
| 31\11, 1430.769 | | rowspan="2" |23\8, 1452.632 | ||
| rowspan="2" | 23\8, 1452.632 | |||
|38\13, 1470.968 | |38\13, 1470.968 | ||
|15\5, 1500 | |15\5, 1500 | ||
|37\12, 1531.034 | |37\12, 1531.034 | ||
|22\7, 1552.941 | |22\7, 1552.941 | ||
|29\9, 1581. | | 29\9, 1581.818 | ||
|- | |- | ||
| | |9b, Ad | ||
|32\11, 1476.923 | |32\11, 1476.923 | ||
| 37\13, 1432.258 | |37\13, 1432.258 | ||
|14\5, 1400 | |14\5, 1400 | ||
|33\12, 1365.517 | |33\12, 1365.517 | ||
|19\7, 1341.176 | |19\7, 1341.176 | ||
|24\9, 1309. | |24\9, 1309.091 | ||
|- | |- | ||
!A | !'''9, A''' | ||
!33\11, 1523.077 | !33\11, 1523.077 | ||
!24\8, 1515.789 | !24\8, 1515.789 | ||
Line 850: | Line 983: | ||
!36\12, 1489.655 | !36\12, 1489.655 | ||
!21\7, 1482.353 | !21\7, 1482.353 | ||
!27\9, 1472. | !27\9, 1472.727 | ||
|- | |- | ||
|A | |9#, A# | ||
|34\11, 1569.231 | |34\11, 1569.231 | ||
|25\8, 1578.947 | | 25\8, 1578.947 | ||
|41\13, 1587.097 | |41\13, 1587.097 | ||
| rowspan="2" |16\5, 1600 | | rowspan="2" |16\5, 1600 | ||
|39\12, 1613.793 | |39\12, 1613.793 | ||
|23\7, 1623.529 | |23\7, 1623.529 | ||
|30\9, 1636. | |30\9, 1636.364 | ||
|- | |- | ||
|Xb, Bd | |||
|Xb | |||
|36\11, 1661.538 | |36\11, 1661.538 | ||
|26\8, 1642.105 | |26\8, 1642.105 | ||
|42\13, 1625.806 | |42\13, 1625.806 | ||
|38\12, 1572.034 | |38\12, 1572.034 | ||
|22\7, 1552.941 | | 22\7, 1552.941 | ||
|28\9, 1527.{{Overline|27}} | |28\9, 1527.{{Overline|27}} | ||
|- | |- | ||
|'''B | |'''X, B''' | ||
|'''37\11,''' '''1707.692''' | |'''37\11,''' '''1707.692''' | ||
|'''27\8,''' '''1705.263''' | |'''27\8,''' '''1705.263''' | ||
Line 879: | Line 1,009: | ||
|'''41\12,''' '''1696.552''' | |'''41\12,''' '''1696.552''' | ||
|'''24\7,''' '''1694.118''' | |'''24\7,''' '''1694.118''' | ||
|'''31\9,''' '''1690. | |'''31\9,''' '''1690.909''' | ||
|- | |- | ||
|B | |X#, B# | ||
|38\11, 1753.846 | |38\11, 1753.846 | ||
|28\8, 1768.421 | |28\8, 1768.421 | ||
Line 889: | Line 1,018: | ||
|44\12, 1820.690 | |44\12, 1820.690 | ||
|26\7, 1835.294 | |26\7, 1835.294 | ||
|34\9, 1854. | |34\9, 1854.545 | ||
|- | |- | ||
|''' | |'''Eb, Dd''' | ||
|'''40\11,''' '''1846.154''' | |'''40\11,''' '''1846.154''' | ||
|'''29\8,''' '''1831.579''' | |'''29\8,''' '''1831.579''' | ||
Line 898: | Line 1,026: | ||
|'''43\12,''' '''1779.310''' | |'''43\12,''' '''1779.310''' | ||
|'''25\7,''' '''1764.706''' | |'''25\7,''' '''1764.706''' | ||
|'''32\9,''' '''1745. | |'''32\9,''' '''1745.455''' | ||
|- | |- | ||
| | |E, D | ||
|41\11, 1892.308 | |41\11, 1892.308 | ||
|30\8, 1894.737 | |30\8, 1894.737 | ||
Line 908: | Line 1,035: | ||
|46\12, 1903.448 | |46\12, 1903.448 | ||
|27\7, 1905.882 | |27\7, 1905.882 | ||
|35\9, 1909. | |35\9, 1909.090 | ||
|- | |- | ||
| | |E#, D# | ||
|42\11, 1938.462 | |42\11, 1938.462 | ||
| rowspan="2" |31\8, 1957.895 | | rowspan="2" |31\8, 1957.895 | ||
Line 918: | Line 1,044: | ||
|49\12, 2027.586 | |49\12, 2027.586 | ||
|29\7, 2047.059 | |29\7, 2047.059 | ||
|38\9, 2072. | |38\9, 2072.727 | ||
|- | |- | ||
| | |0b, Ed | ||
|43\11, 1984.615 | |43\11, 1984.615 | ||
|50\13, 1935.484 | |50\13, 1935.484 | ||
Line 929: | Line 1,054: | ||
|33\9, 1800 | |33\9, 1800 | ||
|- | |- | ||
! | !0, E | ||
!44\11, 2030.769 | |||
!44\11, 2030.769 | |||
!32\8, 2021.053 | !32\8, 2021.053 | ||
!52\13, 2012.903 | !52\13, 2012.903 | ||
Line 937: | Line 1,061: | ||
!48\12, 1986.207 | !48\12, 1986.207 | ||
!28\7, 1976.471 | !28\7, 1976.471 | ||
!36\9, 1963.{ | !36\9, 1963.636 | ||
|} | |||
{| class="wikitable" | |||
! Notation | |||
!Supersoft | |||
! Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |- | ||
!Hyperionic | |||
!~11ed4/3 | |||
!~8ed4/3 | |||
!~13ed4/3 | |||
!~5ed4/3 | |||
!~12ed4/3 | |||
!~7ed4\3 | |||
!~9ed4/3 | |||
|- | |- | ||
| | |1# | ||
| | |1\11, 46.154 | ||
|1\8, 63.158 | |||
| | |2\13, 77.419 | ||
| | | rowspan="2" |1\5, 100 | ||
| | |3\12, 124.138 | ||
| | |2\7, 141.176 | ||
| | |3\9, 163.636 | ||
|- | |- | ||
| | |2f | ||
| | |3\11, 138.462 | ||
|2\8, 126.316 | |||
| | |3\13, 116.129 | ||
| | |2\12, 82.759 | ||
| | | 1\7, 70.588 | ||
|1\9, 54.545 | |||
| | |||
| | |||
|- | |- | ||
| | |'''2''' | ||
| | |'''4\11,''' '''184.615''' | ||
|'''3\8,''' '''189.474''' | |||
| | |'''5\13,''' '''193.548''' | ||
| | |'''2\5,''' '''200''' | ||
|'''5\12,''' '''206.897''' | |||
| | |'''3\7,''' '''211.765''' | ||
| | |'''4\9,''' '''218.182''' | ||
| | |||
|- | |- | ||
| | |2# | ||
| | | 5\11, 230.769 | ||
| | |4\8, 252.632 | ||
| | |7\13, 270.967 | ||
|''' | | rowspan="2" |'''3\5,''' '''300''' | ||
| | | 8\12, 331.034 | ||
| | |5\7, 352.941 | ||
| | |7\9, 381.818 | ||
|- | |- | ||
| | |'''3f''' | ||
| | |'''7\11,''' '''323.077''' | ||
|'''5\8,''' '''315.789''' | |||
| | |'''8\13,''' '''309.677''' | ||
| | |'''7\12,''' '''289.655''' | ||
| | |'''4\7,''' '''282.353''' | ||
|'''5\9,''' '''272.727''' | |||
| | |||
| | |||
|- | |- | ||
| | |3 | ||
| | |8\11, 369.231 | ||
|6\8, 378.947 | |||
| | |10\13, 387.098 | ||
| | |4\5, 400 | ||
| | |10\12, 413.793 | ||
| | |6\7, 423.529 | ||
| | |8\9, 436.364 | ||
| | |||
|- | |- | ||
| | |3# | ||
| | |9\11, 415.385 | ||
| | | rowspan="2" |7\8, 442.105 | ||
| | |12\13, 464.516 | ||
| | |5\5, 500 | ||
| | |13\12, 537.069 | ||
| | |8\7, 564.705 | ||
| | |11\9, 600 | ||
|- | |- | ||
|4f | |||
|10\11, 461.538 | |||
|11\13, 425.806 | |||
|4\5, 400 | |||
|9\12, 372.414 | |||
|5\7, 352.941 | |||
|6\9, 327.273 | |||
|- | |- | ||
!4 | |||
!'''11\11,''' '''507.692''' | |||
!'''8\8,''' '''505.263''' | |||
!'''13\13,''' '''503.226''' | |||
!5\5, 500 | |||
!'''12\12,''' '''496.552''' | |||
!'''7\7,''' '''494.118''' | |||
!'''9\9,''' '''490.909''' | |||
|- | |- | ||
| | |4# | ||
| | |12\11, 553.846 | ||
|9\8, 568.421 | |||
| | |15\13, 580.645 | ||
| | | rowspan="2" |6\5, 600 | ||
| | |15\12, 620.690 | ||
| | |9\7, 635.294 | ||
| | |12\9, 654.545 | ||
|- | |- | ||
| | |5f | ||
| | |14\11, 646.154 | ||
|10\8, 631.579 | |||
| | |16\13, 619.355 | ||
| | |14\12, 579.310 | ||
|8\7, 564.706 | |||
| | |10\9, 545.455 | ||
| | |||
| | |||
|- | |- | ||
| | |'''5''' | ||
| | |'''15\11,''' '''692.308''' | ||
|'''11\8''' '''694.737''' | |||
| | |'''18\13,''' '''696.774''' | ||
| | |'''7\5,''' '''700''' | ||
|'''17\12,''' '''703.448''' | |||
| | |'''10\7,''' '''705.882''' | ||
| | |'''13\9,''' '''709.091''' | ||
| | |||
|- | |- | ||
| | |5# | ||
| | |16\11, 738.462 | ||
| | |12\8, 757.895 | ||
| | |20\13, 774.194 | ||
|''' | | rowspan="2" |'''8\5,''' '''800''' | ||
| | |20\12, 827.586 | ||
| | |12\7, 847.059 | ||
| | |16\9, 872.727 | ||
|- | |- | ||
| | |'''6f''' | ||
| | |'''18\11,''' '''830.769''' | ||
|'''13\8,''' '''821.053''' | |||
| | |'''21\13,''' '''812.903''' | ||
| | |'''19\12,''' '''786.207''' | ||
| | |'''11\7,''' '''776.471''' | ||
|'''14\9,''' '''763.636''' | |||
| | |||
| | |||
|- | |- | ||
| | |6 | ||
| | |19\11, 876.923 | ||
| | |14\8, 884.211 | ||
| rowspan="2" | | |23\13, 890.323 | ||
| | |9\5, 900 | ||
| | |22\12, 910.345 | ||
| | |13\7, 917.647 | ||
| | |17\9, 927.727 | ||
| | |- | ||
|6# | |||
|20\11, 923.077 | |||
| rowspan="2" |15\8, 947.368 | |||
|25\13, 967.742 | |||
|10\5, 1000 | |||
| 25\12, 1034.483 | |||
|15\7, 1058.824 | |||
|20\9, 1090.909 | |||
|- | |- | ||
| | |7f | ||
| | |21\11, 969.231 | ||
|24\13, 929.032 | |||
| | |9\5, 900 | ||
| | |21\12, 868.966 | ||
| | | 11\7, 776.471 | ||
| | |15\9, 818.182 | ||
| | |||
|- | |- | ||
! | !7 | ||
! | !22\11, 1015.385 | ||
!16\8, 1010.526 | |||
! | !26\13, 1006.452 | ||
! | !10\5, 1000 | ||
! | !24\12, 993.103 | ||
! | !14\7, 988.235 | ||
! | ! 18\9, 981.818 | ||
! | |||
|- | |- | ||
| | | 7# | ||
|23\11, 1061.538 | |||
|17\8, 1073.684 | |||
|28\13, 1083.871 | |||
| rowspan="2" |11\5, 1100 | |||
|27\12, 1117.241 | |||
|16\7, 1129.412 | |||
|21\9, 1145.455 | |||
|- | |- | ||
|0 | |8f | ||
|Do, Sol | |25\11, 1153.846 | ||
|perfect unison | |18\8, 1136.842 | ||
|0 | |29\13, 1122.581 | ||
|Do, Sol | |26\12, 1075.862 | ||
|perfect fourth | |15\7, 1058.824 | ||
|19\9, 1036.364 | |||
|- | |||
|'''8''' | |||
|'''26\11,''' '''1200''' | |||
|'''19\8,''' '''1200''' | |||
|'''31\13,''' '''1200''' | |||
|'''12\5,''' '''1200''' | |||
|'''29\12,''' '''1200''' | |||
|'''17\7,''' '''1200''' | |||
|'''22\9,''' '''1200''' | |||
|- | |||
|8# | |||
|27\11, 1246.154 | |||
|20\8, 1263.158 | |||
|33\13, 1277.419 | |||
| rowspan="2" |'''13\5,''' '''1300''' | |||
|32\12, 1324.138 | |||
|19\7, 1341.176 | |||
|25\9, 1363.636 | |||
|- | |||
|'''9f''' | |||
|'''29\11,''' '''1338.462''' | |||
|'''21\8,''' '''1326.316''' | |||
|'''34\13,''' '''1316.129''' | |||
|'''31\12,''' '''1282.759''' | |||
|'''18\7,''' '''1270.588''' | |||
|'''23\9,''' '''1254.545''' | |||
|- | |||
|9 | |||
|30\11, 1384.615 | |||
|22\8, 1389.474 | |||
| 36\13, 1393.548 | |||
|14\5, 1400 | |||
|34\12, 1406.897 | |||
|20\7, 1411.765 | |||
|26\9, 1418.182 | |||
|- | |||
|9# | |||
|31\11, 1430.769 | |||
| rowspan="2" |23\8, 1452.632 | |||
|38\13, 1470.968 | |||
|15\5, 1500 | |||
|37\12, 1531.034 | |||
|22\7, 1552.941 | |||
| 29\9, 1581.818 | |||
|- | |||
|Af | |||
|32\11, 1476.923 | |||
|37\13, 1432.258 | |||
|14\5, 1400 | |||
|33\12, 1365.517 | |||
|19\7, 1341.176 | |||
|24\9, 1309.091 | |||
|- | |||
!A | |||
!33\11, 1523.077 | |||
!24\8, 1515.789 | |||
!39\13, 1509.677 | |||
!15\5, 1500 | |||
!36\12, 1489.655 | |||
!21\7, 1482.353 | |||
!27\9, 1472.727 | |||
|- | |||
|A# | |||
|34\11, 1569.231 | |||
|25\8, 1578.947 | |||
|41\13, 1587.097 | |||
| rowspan="2" |16\5, 1600 | |||
|39\12, 1613.793 | |||
|23\7, 1623.529 | |||
|30\9, 1636.364 | |||
|- | |||
|Bf | |||
|36\11, 1661.538 | |||
|26\8, 1642.105 | |||
|42\13, 1625.806 | |||
|38\12, 1572.034 | |||
|22\7, 1552.941 | |||
|28\9, 1527.{{Overline|27}} | |||
|- | |||
|'''B''' | |||
|'''37\11,''' '''1707.692''' | |||
|'''27\8,''' '''1705.263''' | |||
|'''44\13,''' '''1703.226''' | |||
|'''17\5,''' '''1700''' | |||
|'''41\12,''' '''1696.552''' | |||
|'''24\7,''' '''1694.118''' | |||
|'''31\9,''' '''1690.909''' | |||
|- | |||
|B# | |||
| 38\11, 1753.846 | |||
|28\8, 1768.421 | |||
|46\13, 1780.645 | |||
| rowspan="2" |'''18\5,''' '''1800''' | |||
|44\12, 1820.690 | |||
|26\7, 1835.294 | |||
| 34\9, 1854.545 | |||
|- | |||
|'''Cf''' | |||
|'''40\11,''' '''1846.154''' | |||
|'''29\8,''' '''1831.579''' | |||
|'''47\13,''' '''1819.355''' | |||
|'''43\12,''' '''1779.310''' | |||
|'''25\7,''' '''1764.706''' | |||
|'''32\9,''' '''1745.455''' | |||
|- | |||
|C | |||
| 41\11, 1892.308 | |||
|30\8, 1894.737 | |||
|49\13, 1896.774 | |||
|19\5, 1900 | |||
|46\12, 1903.448 | |||
|27\7, 1905.882 | |||
|35\9, 1909.090 | |||
|- | |||
|C# | |||
|42\11, 1938.462 | |||
| rowspan="2" |31\8, 1957.895 | |||
|51\13, 1974.194 | |||
|20\5, 2000 | |||
|49\12, 2027.586 | |||
|29\7, 2047.059 | |||
| 38\9, 2072.727 | |||
|- | |||
|Df | |||
|43\11, 1984.615 | |||
|50\13, 1935.484 | |||
|19\5, 1900 | |||
|45\12, 1862.069 | |||
|26\7, 1835.294 | |||
|33\9, 1800 | |||
|- | |||
!D | |||
!44\11, 2030.769 | |||
!32\8, 2021.053 | |||
! 52\13, 2012.903 | |||
!20\5, 2000 | |||
!48\12, 1986.207 | |||
!28\7, 1976.471 | |||
!36\9, 1963.636 | |||
|- | |||
| D# | |||
|45\11, 2076.923 | |||
|33\8, 2084.211 | |||
|54\13, 2090.323 | |||
| rowspan="2" |21\5, 2100 | |||
|51\12, 2110.345 | |||
|30\7, 2117.647 | |||
|39\9, 2127.273 | |||
|- | |||
|Ef | |||
|47\11, 2169.231 | |||
|34\8, 2147.368 | |||
|55\13, 2129.032 | |||
|50\12, 2068.966 | |||
|29\7, 2047.059 | |||
|37\9, 2018.182 | |||
|- | |||
|'''E''' | |||
|'''48\11,''' '''2215.385''' | |||
|'''35\8,''' '''2210.526''' | |||
|'''57\13,''' '''2206.452''' | |||
|'''22\5,''' '''2200''' | |||
|'''53\12,''' '''2193.103''' | |||
|'''31\7,''' '''2188.235''' | |||
|'''40\9,''' '''2181.818''' | |||
|- | |||
|E# | |||
|49\11, 2261.538 | |||
|36\8, 2273.684 | |||
|59\13, 2283.871 | |||
| rowspan="2" |'''23\5,''' '''2300''' | |||
|56\12, 2317.241 | |||
|33\7, 2329.412 | |||
|43\9, 2345.455 | |||
|- | |||
|'''Ff''' | |||
|'''51\11,''' '''2353.846''' | |||
|'''37\8,''' '''2336.842''' | |||
|'''61\13,''' '''2322.581''' | |||
|'''55\12,''' '''2275.864''' | |||
|'''32\7,''' '''2258.824''' | |||
|'''41\9,''' '''2236.364''' | |||
|- | |||
|F | |||
|52\11, 2400 | |||
|38\8, 2400 | |||
|62\13, 2400 | |||
|24\5, 2400 | |||
|58\12, 2400 | |||
|34\7, 2400 | |||
|44\9, 2400 | |||
|- | |||
|F# | |||
|53\11, 2446.154 | |||
| rowspan="2" |39\8, 2463.158 | |||
|64\13, 2477.419 | |||
|25\5, 2500 | |||
|61\12, 2524.138 | |||
|36\7, 2541.176 | |||
|47/9, 2563.636 | |||
|- | |||
|1f | |||
|54\11, 2492.308 | |||
|63\13, 2438.710 | |||
|24\5, 2400 | |||
|57\12, 2358.621 | |||
|33\7, 2329.412 | |||
|42\9, 2390.909 | |||
|- | |||
!1 | |||
!55\11, 2538.462 | |||
!40\8, 2526.316 | |||
!65\13, 2516.129 | |||
!25\5, 2500 | |||
!60\12, 2482.759 | |||
!35\7, 2470.588 | |||
!45\9, 2454.545 | |||
|} | |||
{| class="wikitable" | |||
!Notation | |||
!Supersoft | |||
!Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |||
!Subsextal | |||
!~11ed4/3 | |||
!~8ed4/3 | |||
!~13ed4/3 | |||
!~5ed4/3 | |||
!~12ed4/3 | |||
!~7ed4\3 | |||
!~9ed4/3 | |||
|- | |||
|0# | |||
|1\11, 46.154 | |||
|1\8, 63.158 | |||
|2\13, 77.419 | |||
| rowspan="2" |1\5, 100 | |||
|3\12, 124.138 | |||
|2\7, 141.176 | |||
|3\9, 163.636 | |||
|- | |||
|1f | |||
|3\11, 138.462 | |||
|2\8, 126.316 | |||
|3\13, 116.129 | |||
|2\12, 82.759 | |||
|1\7, 70.588 | |||
|1\9, 54.545 | |||
|- | |||
|'''1''' | |||
|'''4\11,''' '''184.615''' | |||
|'''3\8,''' '''189.474''' | |||
|'''5\13,''' '''193.548''' | |||
|'''2\5,''' '''200''' | |||
|'''5\12,''' '''206.897''' | |||
|'''3\7,''' '''211.765''' | |||
|'''4\9,''' '''218.182''' | |||
|- | |||
|1# | |||
|5\11, 230.769 | |||
|4\8, 252.632 | |||
|7\13, 270.967 | |||
| rowspan="2" |'''3\5,''' '''300''' | |||
|8\12, 331.034 | |||
|5\7, 352.941 | |||
|7\9, 381.818 | |||
|- | |||
|2f | |||
|'''7\11,''' '''323.077''' | |||
|'''5\8,''' '''315.789''' | |||
|'''8\13,''' '''309.677''' | |||
|'''7\12,''' '''289.655''' | |||
|'''4\7,''' '''282.353''' | |||
|'''5\9,''' '''272.727''' | |||
|- | |||
|'''2''' | |||
|8\11, 369.231 | |||
|6\8, 378.947 | |||
|10\13, 387.098 | |||
|4\5, 400 | |||
|10\12, 413.793 | |||
|6\7, 423.529 | |||
|8\9, 436.364 | |||
|- | |||
|2# | |||
|9\11, 415.385 | |||
| rowspan="2" |7\8, 442.105 | |||
|12\13, 464.516 | |||
|5\5, 500 | |||
|13\12, 537.069 | |||
|8\7, 564.705 | |||
|11\9, 600 | |||
|- | |||
|'''3f''' | |||
|10\11, 461.538 | |||
|11\13, 425.806 | |||
|4\5, 400 | |||
|9\12, 372.414 | |||
|5\7, 352.941 | |||
|6\9, 327.273 | |||
|- | |||
!3 | |||
!'''11\11,''' '''507.692''' | |||
!'''8\8,''' '''505.263''' | |||
!'''13\13,''' '''503.226''' | |||
!5\5, 500 | |||
!'''12\12,''' '''496.552''' | |||
!'''7\7,''' '''494.118''' | |||
!'''9\9,''' '''490.909''' | |||
|- | |||
|3# | |||
|12\11, 553.846 | |||
|9\8, 568.421 | |||
|15\13, 580.645 | |||
| rowspan="2" |6\5, 600 | |||
|15\12, 620.690 | |||
|9\7, 635.294 | |||
|12\9, 654.545 | |||
|- | |||
|4f | |||
|14\11, 646.154 | |||
|10\8, 631.579 | |||
|16\13, 619.355 | |||
|14\12, 579.310 | |||
|8\7, 564.706 | |||
|10\9, 545.455 | |||
|- | |||
|'''4''' | |||
|'''15\11,''' '''692.308''' | |||
|'''11\8''' '''694.737''' | |||
|'''18\13,''' '''696.774''' | |||
|'''7\5,''' '''700''' | |||
|'''17\12,''' '''703.448''' | |||
|'''10\7,''' '''705.882''' | |||
|'''13\9,''' '''709.091''' | |||
|- | |||
|4# | |||
|16\11, 738.462 | |||
|12\8, 757.895 | |||
|20\13, 774.194 | |||
| rowspan="2" |'''8\5,''' '''800''' | |||
|20\12, 827.586 | |||
|12\7, 847.059 | |||
|16\9, 872.727 | |||
|- | |||
|5f | |||
|'''18\11,''' '''830.769''' | |||
|'''13\8,''' '''821.053''' | |||
|'''21\13,''' '''812.903''' | |||
|'''19\12,''' '''786.207''' | |||
|'''11\7,''' '''776.471''' | |||
|'''14\9,''' '''763.636''' | |||
|- | |||
|'''5''' | |||
|19\11, 876.923 | |||
|14\8, 884.211 | |||
|23\13, 890.323 | |||
|9\5, 900 | |||
|22\12, 910.345 | |||
|13\7, 917.647 | |||
|17\9, 927.727 | |||
|- | |||
|5# | |||
|20\11, 923.077 | |||
| rowspan="2" |15\8, 947.368 | |||
|25\13, 967.742 | |||
|10\5, 1000 | |||
|25\12, 1034.483 | |||
|15\7, 1058.824 | |||
|20\9, 1090.909 | |||
|- | |||
|'''6f''' | |||
|21\11, 969.231 | |||
|24\13, 929.032 | |||
|9\5, 900 | |||
|21\12, 868.966 | |||
|11\7, 776.471 | |||
|15\9, 818.182 | |||
|- | |||
!6 | |||
!22\11, 1015.385 | |||
!16\8, 1010.526 | |||
!26\13, 1006.452 | |||
!10\5, 1000 | |||
!24\12, 993.103 | |||
!14\7, 988.235 | |||
!18\9, 981.818 | |||
|- | |||
|6# | |||
|23\11, 1061.538 | |||
|17\8, 1073.684 | |||
|28\13, 1083.871 | |||
| rowspan="2" |11\5, 1100 | |||
|27\12, 1117.241 | |||
|16\7, 1129.412 | |||
|21\9, 1145.455 | |||
|- | |||
|7f | |||
|25\11, 1153.846 | |||
|18\8, 1136.842 | |||
|29\13, 1122.581 | |||
|26\12, 1075.862 | |||
|15\7, 1058.824 | |||
|19\9, 1036.364 | |||
|- | |||
|7 | |||
|'''26\11,''' '''1200''' | |||
|'''19\8,''' '''1200''' | |||
|'''31\13,''' '''1200''' | |||
|'''12\5,''' '''1200''' | |||
|'''29\12,''' '''1200''' | |||
|'''17\7,''' '''1200''' | |||
|'''22\9,''' '''1200''' | |||
|- | |||
|7# | |||
|27\11, 1246.154 | |||
|20\8, 1263.158 | |||
|33\13, 1277.419 | |||
| rowspan="2" |'''13\5,''' '''1300''' | |||
|32\12, 1324.138 | |||
|19\7, 1341.176 | |||
|25\9, 1363.636 | |||
|- | |||
|8f | |||
|'''29\11,''' '''1338.462''' | |||
|'''21\8,''' '''1326.316''' | |||
|'''34\13,''' '''1316.129''' | |||
|'''31\12,''' '''1282.759''' | |||
|'''18\7,''' '''1270.588''' | |||
|'''23\9,''' '''1254.545''' | |||
|- | |||
|'''8''' | |||
|30\11, 1384.615 | |||
|22\8, 1389.474 | |||
|36\13, 1393.548 | |||
|14\5, 1400 | |||
|34\12, 1406.897 | |||
|20\7, 1411.765 | |||
|26\9, 1418.182 | |||
|- | |||
|8# | |||
|31\11, 1430.769 | |||
| rowspan="2" |23\8, 1452.632 | |||
|38\13, 1470.968 | |||
|15\5, 1500 | |||
|37\12, 1531.034 | |||
|22\7, 1552.941 | |||
|29\9, 1581.818 | |||
|- | |||
|9f | |||
|32\11, 1476.923 | |||
|37\13, 1432.258 | |||
|14\5, 1400 | |||
|33\12, 1365.517 | |||
|19\7, 1341.176 | |||
|24\9, 1309.091 | |||
|- | |||
!9 | |||
!33\11, 1523.077 | |||
!24\8, 1515.789 | |||
!39\13, 1509.677 | |||
!15\5, 1500 | |||
!36\12, 1489.655 | |||
!21\7, 1482.353 | |||
!27\9, 1472.727 | |||
|- | |||
|9# | |||
|34\11, 1569.231 | |||
|25\8, 1578.947 | |||
|41\13, 1587.097 | |||
| rowspan="2" |16\5, 1600 | |||
|39\12, 1613.793 | |||
|23\7, 1623.529 | |||
|30\9, 1636.364 | |||
|- | |||
|Xb | |||
|36\11, 1661.538 | |||
|26\8, 1642.105 | |||
|42\13, 1625.806 | |||
|38\12, 1572.034 | |||
|22\7, 1552.941 | |||
|28\9, 1527.{{Overline|27}} | |||
|- | |||
|'''X''' | |||
|'''37\11,''' '''1707.692''' | |||
|'''27\8,''' '''1705.263''' | |||
|'''44\13,''' '''1703.226''' | |||
|'''17\5,''' '''1700''' | |||
|'''41\12,''' '''1696.552''' | |||
|'''24\7,''' '''1694.118''' | |||
|'''31\9,''' '''1690.909''' | |||
|- | |||
|X# | |||
|38\11, 1753.846 | |||
|28\8, 1768.421 | |||
|46\13, 1780.645 | |||
| rowspan="2" |'''18\5,''' '''1800''' | |||
|44\12, 1820.690 | |||
|26\7, 1835.294 | |||
|34\9, 1854.545 | |||
|- | |||
|'''ɛf''' | |||
|'''40\11,''' '''1846.154''' | |||
|'''29\8,''' '''1831.579''' | |||
|'''47\13,''' '''1819.355''' | |||
|'''43\12,''' '''1779.310''' | |||
|'''25\7,''' '''1764.706''' | |||
|'''32\9,''' '''1745.455''' | |||
|- | |||
|ɛ | |||
|41\11, 1892.308 | |||
|30\8, 1894.737 | |||
|49\13, 1896.774 | |||
|19\5, 1900 | |||
|46\12, 1903.448 | |||
|27\7, 1905.882 | |||
|35\9, 1909.090 | |||
|- | |||
|ɛ# | |||
|42\11, 1938.462 | |||
| rowspan="2" |31\8, 1957.895 | |||
|51\13, 1974.194 | |||
|20\5, 2000 | |||
|49\12, 2027.586 | |||
|29\7, 2047.059 | |||
|38\9, 2072.727 | |||
|- | |||
|Af | |||
|43\11, 1984.615 | |||
|50\13, 1935.484 | |||
|19\5, 1900 | |||
|45\12, 1862.069 | |||
|26\7, 1835.294 | |||
|33\9, 1800 | |||
|- | |||
!A | |||
!44\11, 2030.769 | |||
!32\8, 2021.053 | |||
!52\13, 2012.903 | |||
!20\5, 2000 | |||
!48\12, 1986.207 | |||
!28\7, 1976.471 | |||
!36\9, 1963.636 | |||
|- | |||
|A# | |||
|45\11, 2076.923 | |||
|33\8, 2084.211 | |||
|54\13, 2090.323 | |||
| rowspan="2" |21\5, 2100 | |||
|51\12, 2110.345 | |||
|30\7, 2117.647 | |||
|39\9, 2127.273 | |||
|- | |||
|Bf | |||
|47\11, 2169.231 | |||
|34\8, 2147.368 | |||
|55\13, 2129.032 | |||
|50\12, 2068.966 | |||
|29\7, 2047.059 | |||
|37\9, 2018.182 | |||
|- | |||
|'''B''' | |||
|'''48\11,''' '''2215.385''' | |||
|'''35\8,''' '''2210.526''' | |||
|'''57\13,''' '''2206.452''' | |||
|'''22\5,''' '''2200''' | |||
|'''53\12,''' '''2193.103''' | |||
|'''31\7,''' '''2188.235''' | |||
|'''40\9,''' '''2181.818''' | |||
|- | |||
|B# | |||
|49\11, 2261.538 | |||
|36\8, 2273.684 | |||
|59\13, 2283.871 | |||
| rowspan="2" |'''23\5,''' '''2300''' | |||
|56\12, 2317.241 | |||
|33\7, 2329.412 | |||
|43\9, 2345.455 | |||
|- | |||
|'''Cf''' | |||
|'''51\11,''' '''2353.846''' | |||
|'''37\8,''' '''2336.842''' | |||
|'''61\13,''' '''2322.581''' | |||
|'''55\12,''' '''2275.864''' | |||
|'''32\7,''' '''2258.824''' | |||
|'''41\9,''' '''2236.364''' | |||
|- | |||
|C | |||
|52\11, 2400 | |||
|38\8, 2400 | |||
|62\13, 2400 | |||
|24\5, 2400 | |||
|58\12, 2400 | |||
|34\7, 2400 | |||
|44\9, 2400 | |||
|- | |||
|C# | |||
|53\11, 2446.154 | |||
| rowspan="2" |39\8, 2463.158 | |||
|64\13, 2477.419 | |||
|25\5, 2500 | |||
|61\12, 2524.138 | |||
|36\7, 2541.176 | |||
|47/9, 2563.636 | |||
|- | |||
|Df | |||
|54\11, 2492.308 | |||
|63\13, 2438.710 | |||
|24\5, 2400 | |||
|57\12, 2358.621 | |||
|33\7, 2329.412 | |||
|42\9, 2390.909 | |||
|- | |||
!D | |||
!55\11, 2538.462 | |||
!40\8, 2526.316 | |||
!65\13, 2516.129 | |||
!25\5, 2500 | |||
!60\12, 2482.759 | |||
!35\7, 2470.588 | |||
!45\9, 2454.545 | |||
|- | |||
|D# | |||
|56\11, 2584.615 | |||
|41\8, 2589.474 | |||
|67\13, 2593.548 | |||
| rowspan="2" |26\5, 2600 | |||
|63\12, 2606.897 | |||
|37\7, 2611.765 | |||
|48\9, 2618.182 | |||
|- | |||
|Ef | |||
|58\11, 2676.923 | |||
|42\8, 2652.632 | |||
|69\13, 2670.968 | |||
|62\12, 2565.517 | |||
|36\7, 2541.176 | |||
|46\9, 2509.091 | |||
|- | |||
|'''E''' | |||
|'''59\11,''' '''2723.077''' | |||
|'''43\8,''' '''2715.789''' | |||
|'''70\13,''' '''2709.677''' | |||
|'''27\5,''' '''2700''' | |||
|'''65\12,''' '''2689.655''' | |||
|'''38\7,''' '''2682.353''' | |||
|'''49\9,''' '''2672.727''' | |||
|- | |||
|E# | |||
|60\11, 2769.231 | |||
|44\8, 2778.947 | |||
|72\13, 2787.097 | |||
| rowspan="2" |'''28\5,''' '''2800''' | |||
|68\12, 2813.793 | |||
|40\7, 2823.529 | |||
|52\9, 2836.364 | |||
|- | |||
|'''Ff''' | |||
|'''62\11,''' '''2861.538''' | |||
|'''45\8,''' '''2842.105''' | |||
|'''73\13,''' '''2825.806''' | |||
|'''67\12,''' '''2772.034''' | |||
|'''39\7,''' '''2752.941''' | |||
|'''50\9,''' '''2727.273''' | |||
|- | |||
|F | |||
|63\11, 2907.692 | |||
|46\8, 2905.263 | |||
|75\13, 2903.226 | |||
|29\5, 2900 | |||
|70\12, 2896.552 | |||
|41\7, 2894.118 | |||
|53\9, 2890.909 | |||
|- | |||
|F# | |||
|64\11, 2953.846 | |||
| rowspan="2" |47\8, 2968.421 | |||
|77\13, 2980.645 | |||
|30\5, 3000 | |||
|73\12, 3020.690 | |||
|43\7, 3035.294 | |||
|55\9, 3000 | |||
|- | |||
|0f | |||
|65\11, 3000 | |||
|76\13, 2941.935 | |||
|29\5, 2900 | |||
|69\29, 2855.172 | |||
|40\7, 2823.529 | |||
|52\9, 2836.364 | |||
|- | |||
!0 | |||
!66\11, 3046.154 | |||
!48\8, 30'''31.579''' | |||
!78\13, 30'''19.355''' | |||
!30\5, 3000 | |||
!72\12, 29'''79.310''' | |||
!42\7, 2964.706 | |||
!54\9, 2945.455 | |||
|} | |||
==Intervals== | |||
{| class="wikitable" | |||
!Generators | |||
!Fourth notation | |||
!Interval category name | |||
!Generators | |||
!Notation of 4/3 inverse | |||
!Interval category name | |||
|- | |||
| colspan="6" |The 3-note MOS has the following intervals (from some root): | |||
|- | |||
|0 | |||
|F/C/G ut | |||
Do, Sol | |||
د, ص | |||
|perfect unison | |||
|0 | |||
|F/C/G ut | |||
Do, Sol | |||
د, ص | |||
|perfect fourth | |||
|- | |||
|1 | |||
|A/E/B mib | |||
Mib, Sib | |||
صb, مb | |||
|diminished third | |||
| -1 | |||
|G/D/A re | |||
Re, La | |||
ر, ل | |||
|perfect second | |||
|- | |||
|2 | |||
|G/D/A reb | |||
Reb, Lab | |||
رb, لb | |||
|diminished second | |||
| -2 | |||
|A/E/B mi | |||
Mi, Si | |||
ص, م | |||
|perfect third | |||
|- | |||
| colspan="6" |The chromatic 5-note MOS also has the following intervals (from some root): | |||
|- | |||
|3 | |||
|F/C/G utb | |||
Dob, Solb | |||
دb, صb | |||
|diminished fourth | |||
| -3 | |||
|F/C/G ut# | |||
Do#, Sol# | |||
د, #ص# | |||
|augmented unison (chroma) | |||
|- | |||
|4 | |||
|A/E/B mibb | |||
Mibb, Sibb | |||
مbb, صbb | |||
|doubly diminished third | |||
| -4 | |||
|G/D/A re# | |||
Re#, La# | |||
ر ,# ل# | |||
|augmented second | |||
|} | |||
==Genchain== | |||
The generator chain for this scale is as follows: | |||
{| class="wikitable" | |||
|A/E/B mibb | |||
|F/C/G utb | |||
|G/D/A reb | |||
|A/E/B mib | |||
|F/C/G ut | |||
|G/D/A re | |||
|A/E/B mi | |||
|F/C/G ut# | |||
|G/D/A re# | |||
|A/E/B mi# | |||
|- | |||
|Mibb | |||
Sibb | |||
|Dob | |||
Solb | |||
|Reb | |||
Lab | |||
|Mib | |||
Sib | |||
|Do | |||
Sol | |||
|Re | |||
La | |||
|Mi | |||
Si | |||
|Do# | |||
Sol# | |||
|Re# | |||
La# | |||
|Mi# | |||
Si# | |||
|- | |- | ||
| | |مbb | ||
| | تbb | ||
| | |دb | ||
| | صb | ||
| | |رb | ||
| | لb | ||
|مb | |||
تb | |||
|د | |||
ص | |||
|ر | |||
ل | |||
|م | |||
ت | |||
|د# | |||
ص# | |||
|ر# | |||
ل# | |||
|م# | |||
ت# | |||
|- | |- | ||
| | |dd3 | ||
| | |d4 | ||
| | |d2 | ||
| | |d3 | ||
| | |P1 | ||
| | |P2 | ||
|P3 | |||
|A1 | |||
|A2 | |||
|A3 | |||
|} | |||
==Modes== | |||
The mode names are based on the species of fourth: | |||
{| class="wikitable" | |||
!Mode | |||
!Scale | |||
![[Modal UDP Notation|UDP]] | |||
! colspan="2" |Interval type | |||
|- | |- | ||
!name | |||
!pattern | |||
!notation | |||
!2nd | |||
!3rd | |||
|- | |- | ||
| | |Major | ||
| | |LLs | ||
| | |<nowiki>2|0</nowiki> | ||
| - | |P | ||
| | |P | ||
| | |- | ||
|Minor | |||
|LsL | |||
|<nowiki>1|1</nowiki> | |||
|P | |||
|d | |||
|- | |- | ||
| | |Phrygian | ||
| | |sLL | ||
| | |<nowiki>0|2</nowiki> | ||
| | |d | ||
| | |d | ||
| | |||
|} | |} | ||
== | ==Temperaments== | ||
The generator | The most basic rank-2 temperament interpretation of diatonic is '''Mahuric'''. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled <code>root-2g-(p+g)</code> (p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations. | ||
==='''Mahuric-Meantone'''=== | |||
[[Subgroup]]: 4/3.5/4.3/2 | |||
[[Comma]] list: [[81/80]] | |||
[[POL2]] generator: ~9/8 = 193.6725¢ | |||
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}] | |||
[[Optimal ET sequence]]: [[15ed12/5]], [[24ed12/5]], [[39ed12/5]] ≈ [[5ed4/3]], [[8ed4/3]], [[13ed4/3]] | |||
==='''Mahuric-Superpyth'''=== | |||
[[Subgroup]]: 4/3.9/7.3/2 | |||
[[Comma]] list: [[64/63]] | |||
[[POL2]] generator: ~8/7 = 216.7325¢ | |||
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}] | |||
[[Optimal ET sequence]]: [[15ed7/3]], [[21ed7/3]], [[27ed7/3]], [[33ed7/3]] ≈ [[5ed4/3]], [[7ed4/3]], [[9ed4/3]], [[11ed4/3]] | |||
====Scale tree==== | |||
The spectrum looks like this: | |||
{| class="wikitable" | {| class="wikitable" | ||
!Generator | |||
(bright) | |||
!Cents | |||
!L | |||
!s | |||
!L/s | |||
!Comments | |||
|- | |- | ||
| | |1\3 | ||
| | |171.429 | ||
| | |1 | ||
| | |1 | ||
| | |1.000 | ||
| | |Equalised | ||
|- | |- | ||
|6\17 | |||
|180.000 | |||
|6 | |||
|5 | |||
|1.200 | |||
| | |||
|- | |- | ||
| | |5\14 | ||
| | |181.818 | ||
| | |5 | ||
| | |4 | ||
| | |1.250 | ||
| | |||
|- | |||
|14\39 | |||
|182.609 | |||
|14 | |||
|11 | |||
|1.273 | |||
| | |||
|- | |- | ||
| | |9\25 | ||
| | |183.051 | ||
| | |9 | ||
| | |7 | ||
| | |1.286 | ||
| | |||
|- | |- | ||
| | |4\11 | ||
| | |184.615 | ||
| | |4 | ||
|3 | |||
|1.333 | |||
| | | | ||
|- | |||
|11\30 | |||
|185.915 | |||
|11 | |||
|8 | |||
|1.375 | |||
| | |||
|- | |||
|7\19 | |||
|186.667 | |||
|7 | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|1. | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
|5 | |5 | ||
|1. | |1.400 | ||
| | | | ||
|- | |- | ||
| | |10\27 | ||
| | |187.500 | ||
| | |10 | ||
| | |7 | ||
|1. | |1.429 | ||
| | | | ||
|- | |- | ||
| | |13\35 | ||
| | |187.952 | ||
| | |13 | ||
| | |9 | ||
|1. | |1.444 | ||
| | | | ||
|- | |- | ||
| | |16\43 | ||
| | |188.253 | ||
| | |16 | ||
| | |11 | ||
|1. | |1.4545 | ||
| | | | ||
|- | |- | ||
| | |3\8 | ||
| | |189.474 | ||
|3 | |3 | ||
|1. | |2 | ||
|1.500 | |||
|Mahuric-Meantone starts here | |||
|- | |||
|14\37 | |||
|190.909 | |||
|14 | |||
|9 | |||
|1.556 | |||
| | | | ||
|- | |- | ||
|11\ | |11\29 | ||
| | |191.304 | ||
|11 | |11 | ||
| | |7 | ||
|1. | |1.571 | ||
| | | | ||
|- | |- | ||
| | |8\21 | ||
| | |192.000 | ||
| | |8 | ||
|5 | |5 | ||
| 1. | |1.600 | ||
| | | | ||
|- | |- | ||
| | |5\13 | ||
| | |193.548 | ||
| | |5 | ||
|3 | |||
|1.667 | |||
| | |||
|- | |||
|12\31 | |||
|194.595 | |||
|12 | |||
|7 | |||
|1.714 | |||
| | |||
|- | |||
|7\18 | |||
|195.348 | |||
|7 | |7 | ||
|1. | |4 | ||
|1.750 | |||
| | | | ||
|- | |- | ||
| | |9\23 | ||
| | |196.364 | ||
|9 | |9 | ||
|1. | |5 | ||
|1.800 | |||
| | | | ||
|- | |- | ||
| | |11\28 | ||
| | |197.015 | ||
|11 | |11 | ||
|1. | |6 | ||
|1.833 | |||
| | | | ||
|- | |- | ||
| | |13\33 | ||
| | |197.468 | ||
| | |13 | ||
| | |7 | ||
|1. | |1.857 | ||
| | | | ||
|- | |- | ||
| | |15\38 | ||
| | |197.802 | ||
| | |15 | ||
| | |8 | ||
|1. | |1.875 | ||
| | | | ||
|- | |- | ||
| | |17\43 | ||
| | |198.058 | ||
| | |17 | ||
| | |9 | ||
|1. | |1.889 | ||
| | | | ||
|- | |- | ||
| | |19\48 | ||
| | |198.261 | ||
| | |19 | ||
| | |10 | ||
|1. | |1.900 | ||
| | | | ||
|- | |- | ||
| | |21\53 | ||
| | |198.425 | ||
| | |21 | ||
| | |11 | ||
|1. | |1.909 | ||
| | | | ||
|- | |- | ||
| | |23\58 | ||
| | |198.561 | ||
| | |23 | ||
| | |12 | ||
|1. | |1.917 | ||
| | | | ||
|- | |- | ||
| | |25\63 | ||
| | |198.675 | ||
| | |25 | ||
| | |13 | ||
|1. | |1.923 | ||
| | | | ||
|- | |- | ||
| | |27\68 | ||
| | |198.773 | ||
| | |27 | ||
| | |14 | ||
|1. | |1.929 | ||
| | | | ||
|- | |- | ||
| | |29\73 | ||
| | |198.857 | ||
| | |29 | ||
| | |15 | ||
|1. | |1.933 | ||
| | | | ||
|- | |- | ||
| | |31\78 | ||
| | |198.930 | ||
| | |31 | ||
| | |16 | ||
|1. | |1.9375 | ||
| | | | ||
|- | |- | ||
| | |33\83 | ||
|198. | |198.995 | ||
|33 | |||
|17 | |17 | ||
|1.941 | |||
|1. | |||
| | | | ||
|- | |- | ||
| | |35\88 | ||
| | |199.052 | ||
| | |35 | ||
| | |18 | ||
|1. | |1.944 | ||
| | | | ||
|- | |- | ||
| | |2\5 | ||
| | |200.000 | ||
| | |2 | ||
| | |1 | ||
| | |2.000 | ||
| | |Mahuric-Meantone ends, Mahuric-Pythagorean begins | ||
|- | |- | ||
| | |17\42 | ||
| | |201.980 | ||
| | |17 | ||
| | |8 | ||
| | |2.125 | ||
| | | | ||
|- | |- | ||
| | |15\37 | ||
| | |202.247 | ||
| | |15 | ||
| | |7 | ||
| | |2.143 | ||
| | | | ||
|- | |- | ||
| | |13\32 | ||
| | |202.597 | ||
| | |13 | ||
| | |6 | ||
| | |2.167 | ||
| | | | ||
|- | |- | ||
| | |11\27 | ||
| | |203.077 | ||
| | |11 | ||
| | |5 | ||
| | |2.200 | ||
| | | | ||
|- | |- | ||
| | |9\22 | ||
| | |203.774 | ||
| | |9 | ||
| | |4 | ||
| | |2.250 | ||
| | | | ||
|- | |- | ||
| | |7\17 | ||
| | |204.878 | ||
| | |7 | ||
| | |3 | ||
| | |2.333 | ||
| | | | ||
|- | |- | ||
| | |12\29 | ||
| | |205.714 | ||
| | |12 | ||
| | |5 | ||
| | |2.400 | ||
| | | | ||
|- | |- | ||
| | |5\12 | ||
| | |206.897 | ||
|5 | |||
|2 | |2 | ||
|2.500 | |||
|2. | |Mahuric-Neogothic heartland is from here… | ||
|Mahuric- | |||
|- | |- | ||
| | |18\43 | ||
| | |207.693 | ||
| | |18 | ||
|7 | |7 | ||
|2. | |2.571 | ||
| | | | ||
|- | |- | ||
|13\ | |13\31 | ||
| | |208.000 | ||
|13 | |13 | ||
| | |5 | ||
|2. | |2.600 | ||
| | | | ||
|- | |- | ||
|11\ | |8\19 | ||
| | |208.696 | ||
|8 | |||
|3 | |||
|2.667 | |||
|…to here | |||
|- | |||
|11\26 | |||
|209.524 | |||
|11 | |11 | ||
| | |4 | ||
|2. | |2.750 | ||
| | | | ||
|- | |- | ||
| | |14\33 | ||
| | |210.000 | ||
| | |14 | ||
| | |5 | ||
|2. | |2.800 | ||
| | | | ||
|- | |- | ||
|7\ | |3\7 | ||
| | |211.755 | ||
|3 | |||
|1 | |||
|3.000 | |||
|Mahuric-Pythagorean ends, Mahuric-Superpyth begins | |||
|- | |||
|22\51 | |||
|212.903 | |||
|22 | |||
|7 | |7 | ||
|3 | |3.143 | ||
| | | | ||
|- | |||
|19\44 | |||
|213.084 | |||
|19 | |||
|6 | |||
|3.167 | |||
| | | | ||
|- | |- | ||
| | |16\37 | ||
| | |213.333 | ||
| | |16 | ||
|5 | |5 | ||
| | |3.200 | ||
| | | | ||
|- | |- | ||
| | |13\30 | ||
| | |213.699 | ||
| | |13 | ||
| | |4 | ||
| | |3.250 | ||
| | | | ||
|- | |- | ||
| | |10\23 | ||
| | |214.286 | ||
| | |10 | ||
| | |3 | ||
| | |3.333 | ||
| | | | ||
|- | |- | ||
| | |7\16 | ||
| | |215.385 | ||
| | |7 | ||
| | |2 | ||
| | |3.500 | ||
| | | | ||
|- | |- | ||
| | |11\25 | ||
| | |216.393 | ||
| | |11 | ||
|3 | |3 | ||
| | |3.667 | ||
| | | | ||
|- | |- | ||
| | |15\34 | ||
| | |216.867 | ||
| | |15 | ||
|4 | |4 | ||
| | |3.750 | ||
| | | | ||
|- | |- | ||
| | |19\43 | ||
| | |217.143 | ||
| | |19 | ||
|5 | |5 | ||
| | |3.800 | ||
| | | | ||
|- | |- | ||
| | |4\9 | ||
| | |218.182 | ||
| | |4 | ||
|1 | |1 | ||
| | |4.000 | ||
| | | | ||
|- | |- | ||
| | |13\29 | ||
| | |219.718 | ||
| | |13 | ||
| | |3 | ||
| | |4.333 | ||
| | | | ||
|- | |- | ||
| | |9\20 | ||
| | |220.408 | ||
| | |9 | ||
| | |2 | ||
| | |4.500 | ||
| | | | ||
|- | |- | ||
| | |14\31 | ||
| | |221.053 | ||
| | |14 | ||
| | |3 | ||
| | |4.667 | ||
| | | | ||
|- | |- | ||
| | |5\11 | ||
| | |222.222 | ||
| | |5 | ||
| | |1 | ||
| | |5.000 | ||
| | |Mahuric-Superpyth ends | ||
|- | |- | ||
| | |11\24 | ||
| | |223.728 | ||
| | |11 | ||
|2 | |2 | ||
| | |5.500 | ||
| | | | ||
|- | |- | ||
| | |17\37 | ||
| | |224.176 | ||
| | |17 | ||
|3 | |3 | ||
| | |5.667 | ||
| | | | ||
|- | |- | ||
| | |6\13 | ||
| | |225.000 | ||
| | |6 | ||
| | |1 | ||
| | |6.000 | ||
| | | | ||
|- | |- | ||
| | |1\2 | ||
| | |240.000 | ||
|1 | |1 | ||
| | |0 | ||
| | |→ inf | ||
| | |Paucitonic | ||
| | |} | ||
==See also== | |||
[[2L 1s (4/3-equivalent)]] - idealized tuning | |||
[[4L 2s (7/4-equivalent)]] - Mixolydian and Dorian hexatonic Archytas temperament | |||
[[4L 2s (39/22-equivalent)]] - Mixolydian and Dorian hexatonic Neogothic temperament | |||
[[4L 2s (Komornik–Loreti constant-equivalent)]] - Mixolydian and Dorian hexatonic Komornik–Loreti temperament | |||
[[4L 2s (9/5-equivalent)]] - Mixolydian and Dorian hexatonic Meantone temperament | |||
[[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament | |||
[[6L 3s (26/11-equivalent)]] - Mahuric-Neogothic temperament | |||
[[6L 3s (12/5-equivalent)]] - Mahuric-Meantone temperament | |||
[[8L 4s (28/9-equivalent)]] - Bijou Archytas temperament | |||
[[8L 4s (22/7-equivalent)]] and [[8L 4s (π-equivalent)|8L 4s ([math]π[/math]-equivalent)]] - Bijou Neogothic temperament | |||
[[8L 4s (16/5-equivalent)]] - Bijou Meantone temperament | |||
[[10L 5s (112/27-equivalent)]] - Hyperionic Archytas temperament | |||
[[10L 5s (88/21-equivalent)]] - Hyperionic Neogothic temperament | |||
[[10L 5s (64/15-equivalent)]] - Hyperionic Meantone temperament | |||
[[10L 5s (30/7-equivalent)]] - Hyperionic septimal Meantone temperament | |||
[[12L 6s (16/3-equivalent)]] - Warped Pythagorean Subsextal temperament | |||
[[12L 6s (343/64-equivalent)]] - 1/2 comma Archytas Subsextal temperament] | |||
| | |||
[[12L 6s (11/2-equivalent)]] - Low undecimal Subsextal temperament | |||
[[12L 6s (448/81-equivalent)]] - 1/6 comma Archytas Subsextal temperament | |||
[[12L 6s (4096/729-equivalent)]] - Pythagorean Subsextal temperament | |||
[[12L 6s (28/5-equivalent)]] - Low septimal (meantone) Subsextal temperament | |||
[[12L 6s (45/16-equivalent)|12L 6s (256/45-equivalent)]] - 1/6 comma meantone Subsextal temperament | |||
[[12L 6s (40/7-equivalent)]] - High septimal Subsextal temperament | |||
[[ | |||
[[ | |||
[[ | |||
[[ | |||
[[12L 6s (64/11-equivalent)]] - High undecimal Subsextal temperament | |||
[[12L 6s (11 | |||
[[12L 6s ( | [[12L 6s (729/125-equivalent)]] - 1/2 comma meantone Subsextal temperament <references /> |
Latest revision as of 19:40, 29 December 2024
2L 1s<perfect fourth>, is a perfect fourth-repeating MOS scale. The notation "<perfect fourth>" means the period of the MOS is a perfect fourth, disambiguating it from octave-repeating 2L 1s.
The generator range is 171.4 to 240 cents, placing it near the diatonic major second, usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).
In the fourth-repeating version of the diatonic scale, each tone has a perfect fourth above it. The scale has one major chord and two minor chords.
Basic diatonic is in 5ed4/3, which is a very good fourth-based equal tuning similar to 12edo.
Notation
There are 6 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4 and a fourth has too few notes for a structure analogous to the major scale, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple, quintuple or sextuple fourth (minor seventh, tenth, thirteenth or sixteenth or diminished nineteenth), however it does make navigating the genchain harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard |
---|---|---|---|---|---|---|---|
Fourth | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
F/C/G ut#
Do#, Sol# د#, ص# |
1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
G/D/A reb
Reb, Lab رb, لb |
3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
G/D/A re
Re, La ر, ل |
4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
G/D/A re#
Re#, La# ر,# ل# |
5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
A/E/B mibb
Mibb, Sibb مbb,تbb |
6\11, 276.923 | 6\13, 232.258 | 2\5, 200 | 4\12, 165.517 | 2\7, 141.176 | 2\9, 109.091 | |
A/E/B mib
Mib, Sib مb,تb |
7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 3\5, 300 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 |
A/E/B mi
Mi, Si م, ت |
8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
A/E/B mi#
Mi#, Si# م,#ت# |
9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
F/C/G utb
Dob, Solb دb, صb |
10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
F/C/G ut
Do, Sol د, ص |
11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Seventh | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 | |
Mixolydian | Dorian | |||||||
F/C/G ut#
Sol# ص# |
G/D/A re#
Re# ر# |
1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
G/D/A reb
Lab لb |
A/E/B mib
Mib مb |
3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
G/D/A re
La ل |
A/E/B mi
Mi م |
4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
G/D/A re#
La# ل# |
A/E/B mi#
Mi# م# |
5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
A/E/B mibb
Sibb تbb |
B/F/C fab
Fab فb |
6\11, 276.923 | 6\13, 232.258 | 2\5, 200 | 4\12, 165.517 | 2\7, 141.176 | 2\9, 109.091 | |
A/E/B mib
Sib تb |
B/F/C fa
Fa ف |
7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 3\5, 300 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 |
A/E/B mi
Si ت |
B/F/C fa#
Fa# ف# |
8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
A/E/B mi#
Si# ت# |
B/F/C fax
Fax فx |
9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
B/F/C fab
Dob دb |
C/G/D solb
Solb صb |
10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
B/F/C fa
Do د |
C/G/D sol
Sol ص |
11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
B/F/C fa#
Do# د# |
C/G/D sol#
Sol# ص# |
12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
C/G/D solb
Reb رb |
D/A/E lab
Lab لb |
14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
C/G/D sol
Re ر |
D/A/E la
La ل |
15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
C/G/D sol#
Re# د# |
D/A/E la#
La# ل# |
16\11, 738.462 | 12\8, 757.895 | 20\13, 774.294 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
D/A/E lab
Mib مb |
E/B/F síb
Sib تb |
18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
D/A/E la
Mi م |
E/B/F sí
Si ت |
19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
D/A/E la#
Mi# م# |
E/B/F sí#
Si# ت# |
20\11, 923.077 | 15\8, 947.378 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
F/C/G utb
Solb صb |
G/D/A reb
Reb رb |
21\11, 969.231 | 24\13, 929.033 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
F/C/G ut
Sol ص |
G/D/A re
Re ر |
22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard |
---|---|---|---|---|---|---|---|
Mahur | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
G# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
Jf, Af | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
J, A | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
J#, A# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.968 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
Af, Bf | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
A, B | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
A#, B# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
Bb, Cf | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
B, C | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
B#, C# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
Cf, Qf | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
C, Q | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
C#, Q# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
Qf, Df | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
Q, D | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
Q#, D# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
Df, Sf | 21\11, 969.231 | 24\13, 929.033 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
D, S | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
D#, S# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.455 |
Ef | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.364 | |
E | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
E# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.636 |
Ff | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.545 | |
F | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.182 |
F# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.818 |
Gf | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.091 | |
G | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.727 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard |
---|---|---|---|---|---|---|---|
Bijou | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
0#, E# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
1b, 1d | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
1 | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
1# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.968 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
2b, 2d | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
2 | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
2# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
3b, 3d | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
3 | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
3# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
4b, 4d | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
4 | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
4# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
5b, 5d | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
5 | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
5# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
6b, 6d | 21\11, 969.231 | 24\13, 929.033 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
6 | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
6# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.455 |
7b, 7d | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.364 | |
7 | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
7# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.636 |
8b, Gd | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.545 | |
8, G | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.182 |
8#, G# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.818 |
9b, Ad | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.091 | |
9, A | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.727 |
9#, A# | 34\11, 1569.231 | 25\8, 1578.947 | 41\13, 1587.097 | 16\5, 1600 | 39\12, 1613.793 | 23\7, 1623.529 | 30\9, 1636.364 |
Xb, Bd | 36\11, 1661.538 | 26\8, 1642.105 | 42\13, 1625.806 | 38\12, 1572.034 | 22\7, 1552.941 | 28\9, 1527.27 | |
X, B | 37\11, 1707.692 | 27\8, 1705.263 | 44\13, 1703.226 | 17\5, 1700 | 41\12, 1696.552 | 24\7, 1694.118 | 31\9, 1690.909 |
X#, B# | 38\11, 1753.846 | 28\8, 1768.421 | 46\13, 1780.645 | 18\5, 1800 | 44\12, 1820.690 | 26\7, 1835.294 | 34\9, 1854.545 |
Eb, Dd | 40\11, 1846.154 | 29\8, 1831.579 | 47\13, 1819.355 | 43\12, 1779.310 | 25\7, 1764.706 | 32\9, 1745.455 | |
E, D | 41\11, 1892.308 | 30\8, 1894.737 | 49\13, 1896.774 | 19\5, 1900 | 46\12, 1903.448 | 27\7, 1905.882 | 35\9, 1909.090 |
E#, D# | 42\11, 1938.462 | 31\8, 1957.895 | 51\13, 1974.194 | 20\5, 2000 | 49\12, 2027.586 | 29\7, 2047.059 | 38\9, 2072.727 |
0b, Ed | 43\11, 1984.615 | 50\13, 1935.484 | 19\5, 1900 | 45\12, 1862.069 | 26\7, 1835.294 | 33\9, 1800 | |
0, E | 44\11, 2030.769 | 32\8, 2021.053 | 52\13, 2012.903 | 20\5, 2000 | 48\12, 1986.207 | 28\7, 1976.471 | 36\9, 1963.636 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard |
---|---|---|---|---|---|---|---|
Hyperionic | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
1# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
2f | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
2 | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
2# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
3f | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
3 | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.098 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
3# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
4f | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
4 | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
4# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
5f | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
5 | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
5# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
6f | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
6 | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
6# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
7f | 21\11, 969.231 | 24\13, 929.032 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
7 | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
7# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.455 |
8f | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.364 | |
8 | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
8# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.636 |
9f | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.545 | |
9 | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.182 |
9# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.818 |
Af | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.091 | |
A | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.727 |
A# | 34\11, 1569.231 | 25\8, 1578.947 | 41\13, 1587.097 | 16\5, 1600 | 39\12, 1613.793 | 23\7, 1623.529 | 30\9, 1636.364 |
Bf | 36\11, 1661.538 | 26\8, 1642.105 | 42\13, 1625.806 | 38\12, 1572.034 | 22\7, 1552.941 | 28\9, 1527.27 | |
B | 37\11, 1707.692 | 27\8, 1705.263 | 44\13, 1703.226 | 17\5, 1700 | 41\12, 1696.552 | 24\7, 1694.118 | 31\9, 1690.909 |
B# | 38\11, 1753.846 | 28\8, 1768.421 | 46\13, 1780.645 | 18\5, 1800 | 44\12, 1820.690 | 26\7, 1835.294 | 34\9, 1854.545 |
Cf | 40\11, 1846.154 | 29\8, 1831.579 | 47\13, 1819.355 | 43\12, 1779.310 | 25\7, 1764.706 | 32\9, 1745.455 | |
C | 41\11, 1892.308 | 30\8, 1894.737 | 49\13, 1896.774 | 19\5, 1900 | 46\12, 1903.448 | 27\7, 1905.882 | 35\9, 1909.090 |
C# | 42\11, 1938.462 | 31\8, 1957.895 | 51\13, 1974.194 | 20\5, 2000 | 49\12, 2027.586 | 29\7, 2047.059 | 38\9, 2072.727 |
Df | 43\11, 1984.615 | 50\13, 1935.484 | 19\5, 1900 | 45\12, 1862.069 | 26\7, 1835.294 | 33\9, 1800 | |
D | 44\11, 2030.769 | 32\8, 2021.053 | 52\13, 2012.903 | 20\5, 2000 | 48\12, 1986.207 | 28\7, 1976.471 | 36\9, 1963.636 |
D# | 45\11, 2076.923 | 33\8, 2084.211 | 54\13, 2090.323 | 21\5, 2100 | 51\12, 2110.345 | 30\7, 2117.647 | 39\9, 2127.273 |
Ef | 47\11, 2169.231 | 34\8, 2147.368 | 55\13, 2129.032 | 50\12, 2068.966 | 29\7, 2047.059 | 37\9, 2018.182 | |
E | 48\11, 2215.385 | 35\8, 2210.526 | 57\13, 2206.452 | 22\5, 2200 | 53\12, 2193.103 | 31\7, 2188.235 | 40\9, 2181.818 |
E# | 49\11, 2261.538 | 36\8, 2273.684 | 59\13, 2283.871 | 23\5, 2300 | 56\12, 2317.241 | 33\7, 2329.412 | 43\9, 2345.455 |
Ff | 51\11, 2353.846 | 37\8, 2336.842 | 61\13, 2322.581 | 55\12, 2275.864 | 32\7, 2258.824 | 41\9, 2236.364 | |
F | 52\11, 2400 | 38\8, 2400 | 62\13, 2400 | 24\5, 2400 | 58\12, 2400 | 34\7, 2400 | 44\9, 2400 |
F# | 53\11, 2446.154 | 39\8, 2463.158 | 64\13, 2477.419 | 25\5, 2500 | 61\12, 2524.138 | 36\7, 2541.176 | 47/9, 2563.636 |
1f | 54\11, 2492.308 | 63\13, 2438.710 | 24\5, 2400 | 57\12, 2358.621 | 33\7, 2329.412 | 42\9, 2390.909 | |
1 | 55\11, 2538.462 | 40\8, 2526.316 | 65\13, 2516.129 | 25\5, 2500 | 60\12, 2482.759 | 35\7, 2470.588 | 45\9, 2454.545 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard |
---|---|---|---|---|---|---|---|
Subsextal | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
0# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
1f | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
1 | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
1# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
2f | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
2 | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.098 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
2# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
3f | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
3 | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
3# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
4f | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
4 | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
4# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
5f | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
5 | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
5# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
6f | 21\11, 969.231 | 24\13, 929.032 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
6 | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
6# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.455 |
7f | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.364 | |
7 | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
7# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.636 |
8f | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.545 | |
8 | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.182 |
8# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.818 |
9f | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.091 | |
9 | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.727 |
9# | 34\11, 1569.231 | 25\8, 1578.947 | 41\13, 1587.097 | 16\5, 1600 | 39\12, 1613.793 | 23\7, 1623.529 | 30\9, 1636.364 |
Xb | 36\11, 1661.538 | 26\8, 1642.105 | 42\13, 1625.806 | 38\12, 1572.034 | 22\7, 1552.941 | 28\9, 1527.27 | |
X | 37\11, 1707.692 | 27\8, 1705.263 | 44\13, 1703.226 | 17\5, 1700 | 41\12, 1696.552 | 24\7, 1694.118 | 31\9, 1690.909 |
X# | 38\11, 1753.846 | 28\8, 1768.421 | 46\13, 1780.645 | 18\5, 1800 | 44\12, 1820.690 | 26\7, 1835.294 | 34\9, 1854.545 |
ɛf | 40\11, 1846.154 | 29\8, 1831.579 | 47\13, 1819.355 | 43\12, 1779.310 | 25\7, 1764.706 | 32\9, 1745.455 | |
ɛ | 41\11, 1892.308 | 30\8, 1894.737 | 49\13, 1896.774 | 19\5, 1900 | 46\12, 1903.448 | 27\7, 1905.882 | 35\9, 1909.090 |
ɛ# | 42\11, 1938.462 | 31\8, 1957.895 | 51\13, 1974.194 | 20\5, 2000 | 49\12, 2027.586 | 29\7, 2047.059 | 38\9, 2072.727 |
Af | 43\11, 1984.615 | 50\13, 1935.484 | 19\5, 1900 | 45\12, 1862.069 | 26\7, 1835.294 | 33\9, 1800 | |
A | 44\11, 2030.769 | 32\8, 2021.053 | 52\13, 2012.903 | 20\5, 2000 | 48\12, 1986.207 | 28\7, 1976.471 | 36\9, 1963.636 |
A# | 45\11, 2076.923 | 33\8, 2084.211 | 54\13, 2090.323 | 21\5, 2100 | 51\12, 2110.345 | 30\7, 2117.647 | 39\9, 2127.273 |
Bf | 47\11, 2169.231 | 34\8, 2147.368 | 55\13, 2129.032 | 50\12, 2068.966 | 29\7, 2047.059 | 37\9, 2018.182 | |
B | 48\11, 2215.385 | 35\8, 2210.526 | 57\13, 2206.452 | 22\5, 2200 | 53\12, 2193.103 | 31\7, 2188.235 | 40\9, 2181.818 |
B# | 49\11, 2261.538 | 36\8, 2273.684 | 59\13, 2283.871 | 23\5, 2300 | 56\12, 2317.241 | 33\7, 2329.412 | 43\9, 2345.455 |
Cf | 51\11, 2353.846 | 37\8, 2336.842 | 61\13, 2322.581 | 55\12, 2275.864 | 32\7, 2258.824 | 41\9, 2236.364 | |
C | 52\11, 2400 | 38\8, 2400 | 62\13, 2400 | 24\5, 2400 | 58\12, 2400 | 34\7, 2400 | 44\9, 2400 |
C# | 53\11, 2446.154 | 39\8, 2463.158 | 64\13, 2477.419 | 25\5, 2500 | 61\12, 2524.138 | 36\7, 2541.176 | 47/9, 2563.636 |
Df | 54\11, 2492.308 | 63\13, 2438.710 | 24\5, 2400 | 57\12, 2358.621 | 33\7, 2329.412 | 42\9, 2390.909 | |
D | 55\11, 2538.462 | 40\8, 2526.316 | 65\13, 2516.129 | 25\5, 2500 | 60\12, 2482.759 | 35\7, 2470.588 | 45\9, 2454.545 |
D# | 56\11, 2584.615 | 41\8, 2589.474 | 67\13, 2593.548 | 26\5, 2600 | 63\12, 2606.897 | 37\7, 2611.765 | 48\9, 2618.182 |
Ef | 58\11, 2676.923 | 42\8, 2652.632 | 69\13, 2670.968 | 62\12, 2565.517 | 36\7, 2541.176 | 46\9, 2509.091 | |
E | 59\11, 2723.077 | 43\8, 2715.789 | 70\13, 2709.677 | 27\5, 2700 | 65\12, 2689.655 | 38\7, 2682.353 | 49\9, 2672.727 |
E# | 60\11, 2769.231 | 44\8, 2778.947 | 72\13, 2787.097 | 28\5, 2800 | 68\12, 2813.793 | 40\7, 2823.529 | 52\9, 2836.364 |
Ff | 62\11, 2861.538 | 45\8, 2842.105 | 73\13, 2825.806 | 67\12, 2772.034 | 39\7, 2752.941 | 50\9, 2727.273 | |
F | 63\11, 2907.692 | 46\8, 2905.263 | 75\13, 2903.226 | 29\5, 2900 | 70\12, 2896.552 | 41\7, 2894.118 | 53\9, 2890.909 |
F# | 64\11, 2953.846 | 47\8, 2968.421 | 77\13, 2980.645 | 30\5, 3000 | 73\12, 3020.690 | 43\7, 3035.294 | 55\9, 3000 |
0f | 65\11, 3000 | 76\13, 2941.935 | 29\5, 2900 | 69\29, 2855.172 | 40\7, 2823.529 | 52\9, 2836.364 | |
0 | 66\11, 3046.154 | 48\8, 3031.579 | 78\13, 3019.355 | 30\5, 3000 | 72\12, 2979.310 | 42\7, 2964.706 | 54\9, 2945.455 |
Intervals
Generators | Fourth notation | Interval category name | Generators | Notation of 4/3 inverse | Interval category name |
---|---|---|---|---|---|
The 3-note MOS has the following intervals (from some root): | |||||
0 | F/C/G ut
Do, Sol د, ص |
perfect unison | 0 | F/C/G ut
Do, Sol د, ص |
perfect fourth |
1 | A/E/B mib
Mib, Sib صb, مb |
diminished third | -1 | G/D/A re
Re, La ر, ل |
perfect second |
2 | G/D/A reb
Reb, Lab رb, لb |
diminished second | -2 | A/E/B mi
Mi, Si ص, م |
perfect third |
The chromatic 5-note MOS also has the following intervals (from some root): | |||||
3 | F/C/G utb
Dob, Solb دb, صb |
diminished fourth | -3 | F/C/G ut#
Do#, Sol# د, #ص# |
augmented unison (chroma) |
4 | A/E/B mibb
Mibb, Sibb مbb, صbb |
doubly diminished third | -4 | G/D/A re#
Re#, La# ر ,# ل# |
augmented second |
Genchain
The generator chain for this scale is as follows:
A/E/B mibb | F/C/G utb | G/D/A reb | A/E/B mib | F/C/G ut | G/D/A re | A/E/B mi | F/C/G ut# | G/D/A re# | A/E/B mi# |
Mibb
Sibb |
Dob
Solb |
Reb
Lab |
Mib
Sib |
Do
Sol |
Re
La |
Mi
Si |
Do#
Sol# |
Re#
La# |
Mi#
Si# |
مbb
تbb |
دb
صb |
رb
لb |
مb
تb |
د
ص |
ر
ل |
م
ت |
د#
ص# |
ر#
ل# |
م#
ت# |
dd3 | d4 | d2 | d3 | P1 | P2 | P3 | A1 | A2 | A3 |
Modes
The mode names are based on the species of fourth:
Mode | Scale | UDP | Interval type | |
---|---|---|---|---|
name | pattern | notation | 2nd | 3rd |
Major | LLs | 2|0 | P | P |
Minor | LsL | 1|1 | P | d |
Phrygian | sLL | 0|2 | d | d |
Temperaments
The most basic rank-2 temperament interpretation of diatonic is Mahuric. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled root-2g-(p+g)
(p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations.
Mahuric-Meantone
Subgroup: 4/3.5/4.3/2
POL2 generator: ~9/8 = 193.6725¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: 15ed12/5, 24ed12/5, 39ed12/5 ≈ 5ed4/3, 8ed4/3, 13ed4/3
Mahuric-Superpyth
Subgroup: 4/3.9/7.3/2
POL2 generator: ~8/7 = 216.7325¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: 15ed7/3, 21ed7/3, 27ed7/3, 33ed7/3 ≈ 5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents | L | s | L/s | Comments |
---|---|---|---|---|---|
1\3 | 171.429 | 1 | 1 | 1.000 | Equalised |
6\17 | 180.000 | 6 | 5 | 1.200 | |
5\14 | 181.818 | 5 | 4 | 1.250 | |
14\39 | 182.609 | 14 | 11 | 1.273 | |
9\25 | 183.051 | 9 | 7 | 1.286 | |
4\11 | 184.615 | 4 | 3 | 1.333 | |
11\30 | 185.915 | 11 | 8 | 1.375 | |
7\19 | 186.667 | 7 | 5 | 1.400 | |
10\27 | 187.500 | 10 | 7 | 1.429 | |
13\35 | 187.952 | 13 | 9 | 1.444 | |
16\43 | 188.253 | 16 | 11 | 1.4545 | |
3\8 | 189.474 | 3 | 2 | 1.500 | Mahuric-Meantone starts here |
14\37 | 190.909 | 14 | 9 | 1.556 | |
11\29 | 191.304 | 11 | 7 | 1.571 | |
8\21 | 192.000 | 8 | 5 | 1.600 | |
5\13 | 193.548 | 5 | 3 | 1.667 | |
12\31 | 194.595 | 12 | 7 | 1.714 | |
7\18 | 195.348 | 7 | 4 | 1.750 | |
9\23 | 196.364 | 9 | 5 | 1.800 | |
11\28 | 197.015 | 11 | 6 | 1.833 | |
13\33 | 197.468 | 13 | 7 | 1.857 | |
15\38 | 197.802 | 15 | 8 | 1.875 | |
17\43 | 198.058 | 17 | 9 | 1.889 | |
19\48 | 198.261 | 19 | 10 | 1.900 | |
21\53 | 198.425 | 21 | 11 | 1.909 | |
23\58 | 198.561 | 23 | 12 | 1.917 | |
25\63 | 198.675 | 25 | 13 | 1.923 | |
27\68 | 198.773 | 27 | 14 | 1.929 | |
29\73 | 198.857 | 29 | 15 | 1.933 | |
31\78 | 198.930 | 31 | 16 | 1.9375 | |
33\83 | 198.995 | 33 | 17 | 1.941 | |
35\88 | 199.052 | 35 | 18 | 1.944 | |
2\5 | 200.000 | 2 | 1 | 2.000 | Mahuric-Meantone ends, Mahuric-Pythagorean begins |
17\42 | 201.980 | 17 | 8 | 2.125 | |
15\37 | 202.247 | 15 | 7 | 2.143 | |
13\32 | 202.597 | 13 | 6 | 2.167 | |
11\27 | 203.077 | 11 | 5 | 2.200 | |
9\22 | 203.774 | 9 | 4 | 2.250 | |
7\17 | 204.878 | 7 | 3 | 2.333 | |
12\29 | 205.714 | 12 | 5 | 2.400 | |
5\12 | 206.897 | 5 | 2 | 2.500 | Mahuric-Neogothic heartland is from here… |
18\43 | 207.693 | 18 | 7 | 2.571 | |
13\31 | 208.000 | 13 | 5 | 2.600 | |
8\19 | 208.696 | 8 | 3 | 2.667 | …to here |
11\26 | 209.524 | 11 | 4 | 2.750 | |
14\33 | 210.000 | 14 | 5 | 2.800 | |
3\7 | 211.755 | 3 | 1 | 3.000 | Mahuric-Pythagorean ends, Mahuric-Superpyth begins |
22\51 | 212.903 | 22 | 7 | 3.143 | |
19\44 | 213.084 | 19 | 6 | 3.167 | |
16\37 | 213.333 | 16 | 5 | 3.200 | |
13\30 | 213.699 | 13 | 4 | 3.250 | |
10\23 | 214.286 | 10 | 3 | 3.333 | |
7\16 | 215.385 | 7 | 2 | 3.500 | |
11\25 | 216.393 | 11 | 3 | 3.667 | |
15\34 | 216.867 | 15 | 4 | 3.750 | |
19\43 | 217.143 | 19 | 5 | 3.800 | |
4\9 | 218.182 | 4 | 1 | 4.000 | |
13\29 | 219.718 | 13 | 3 | 4.333 | |
9\20 | 220.408 | 9 | 2 | 4.500 | |
14\31 | 221.053 | 14 | 3 | 4.667 | |
5\11 | 222.222 | 5 | 1 | 5.000 | Mahuric-Superpyth ends |
11\24 | 223.728 | 11 | 2 | 5.500 | |
17\37 | 224.176 | 17 | 3 | 5.667 | |
6\13 | 225.000 | 6 | 1 | 6.000 | |
1\2 | 240.000 | 1 | 0 | → inf | Paucitonic |
See also
2L 1s (4/3-equivalent) - idealized tuning
4L 2s (7/4-equivalent) - Mixolydian and Dorian hexatonic Archytas temperament
4L 2s (39/22-equivalent) - Mixolydian and Dorian hexatonic Neogothic temperament
4L 2s (Komornik–Loreti constant-equivalent) - Mixolydian and Dorian hexatonic Komornik–Loreti temperament
4L 2s (9/5-equivalent) - Mixolydian and Dorian hexatonic Meantone temperament
6L 3s (7/3-equivalent) - Mahuric-Archytas temperament
6L 3s (26/11-equivalent) - Mahuric-Neogothic temperament
6L 3s (12/5-equivalent) - Mahuric-Meantone temperament
8L 4s (28/9-equivalent) - Bijou Archytas temperament
8L 4s (22/7-equivalent) and 8L 4s ([math]π[/math]-equivalent) - Bijou Neogothic temperament
8L 4s (16/5-equivalent) - Bijou Meantone temperament
10L 5s (112/27-equivalent) - Hyperionic Archytas temperament
10L 5s (88/21-equivalent) - Hyperionic Neogothic temperament
10L 5s (64/15-equivalent) - Hyperionic Meantone temperament
10L 5s (30/7-equivalent) - Hyperionic septimal Meantone temperament
12L 6s (16/3-equivalent) - Warped Pythagorean Subsextal temperament
12L 6s (343/64-equivalent) - 1/2 comma Archytas Subsextal temperament]
12L 6s (11/2-equivalent) - Low undecimal Subsextal temperament
12L 6s (448/81-equivalent) - 1/6 comma Archytas Subsextal temperament
12L 6s (4096/729-equivalent) - Pythagorean Subsextal temperament
12L 6s (28/5-equivalent) - Low septimal (meantone) Subsextal temperament
12L 6s (256/45-equivalent) - 1/6 comma meantone Subsextal temperament
12L 6s (40/7-equivalent) - High septimal Subsextal temperament
12L 6s (64/11-equivalent) - High undecimal Subsextal temperament
12L 6s (729/125-equivalent) - 1/2 comma meantone Subsextal temperament