33ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 32ed7/3 33ed7/3 34ed7/3 →
Prime factorization 3 × 11
Step size 44.4506¢ 
Octave 27\33ed7/3 (1200.17¢) (→9\11ed7/3)
Twelfth 43\33ed7/3 (1911.38¢)
Consistency limit 10
Distinct consistency limit 4

33 equal divisions of 7/3 (abbreviated 33ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 33 equal parts of about 44.5⁠ ⁠¢ each. Each step represents a frequency ratio of (7/3)1/33, or the 33rd root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 44.5
2 88.9 19/18, 20/19, 21/20
3 133.4 13/12, 14/13, 27/25
4 177.8 10/9, 21/19
5 222.3 8/7
6 266.7 7/6
7 311.2 6/5
8 355.6 16/13
9 400.1 24/19
10 444.5 22/17
11 489
12 533.4 19/14
13 577.9 7/5
14 622.3 10/7, 23/16
15 666.8 28/19
16 711.2
17 755.7 17/11
18 800.1 19/12
19 844.6 13/8
20 889 5/3
21 933.5 12/7
22 977.9
23 1022.4 9/5
24 1066.8 13/7, 24/13
25 1111.3 19/10
26 1155.7
27 1200.2 2/1
28 1244.6
29 1289.1 19/9, 21/10
30 1333.5 13/6, 28/13
31 1378 20/9
32 1422.4 16/7
33 1466.9 7/3

Harmonics

Approximation of harmonics in 33ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.2 +9.4 +0.3 +14.1 +9.6 +9.4 +0.5 +18.8 +14.2 -17.4 +9.8
Relative (%) +0.4 +21.2 +0.8 +31.7 +21.6 +21.2 +1.1 +42.4 +32.0 -39.2 +21.9
Steps
(reduced)
27
(27)
43
(10)
54
(21)
63
(30)
70
(4)
76
(10)
81
(15)
86
(20)
90
(24)
93
(27)
97
(31)
Approximation of harmonics in 33ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +4.5 +9.6 -21.0 +0.7 -15.4 +19.0 +14.3 +14.4 +18.8 -17.2 -5.3
Relative (%) +10.2 +21.6 -47.1 +1.5 -34.6 +42.8 +32.2 +32.4 +42.4 -38.8 -11.9
Steps
(reduced)
100
(1)
103
(4)
105
(6)
108
(9)
110
(11)
113
(14)
115
(16)
117
(18)
119
(20)
120
(21)
122
(23)