202edo: Difference between revisions
Added regular temperament properties and rank-2 temperaments |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(9 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
202et tempers out [[2401/2400]], 19683/19600 and 65625/65536 in the 7-limit, and [[243/242]], [[441/440]], [[4000/3993]] in the 11-limit. It also notably tempers out the [[quartisma]]. It is the [[optimal patent val]] for the 11-limit rank-2 temperaments [[harry]] and [[tertiaseptal]], the rank-3 temperament [[jove]] tempering out 243/242 and 441/440, and the rank-4 rastmic temperament tempering out 243/242. | == Theory == | ||
202et [[tempering out|tempers out]] [[2401/2400]], [[19683/19600]] and [[65625/65536]] in the 7-limit, and [[243/242]], [[441/440]], [[4000/3993]] in the 11-limit. It also notably tempers out the [[quartisma]]. It is the [[optimal patent val]] for the 11-limit rank-2 temperaments [[harry]] and [[tertiaseptal]], the rank-3 temperament [[jove]] tempering out 243/242 and 441/440, and the rank-4 rastmic temperament tempering out 243/242. | |||
==Regular temperament properties== | === Prime harmonics === | ||
{{Harmonics in equal|202}} | |||
=== Subsets and supersets === | |||
Since 202 factors into {{factorization|202}}, 202edo contains [[2edo]] and [[101edo]] as its subsets. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |- | ||
|2.3 | ! rowspan="2" | [[Subgroup]] | ||
|{{monzo|-160 101}} | ! rowspan="2" | [[Comma list]] | ||
|{{ | ! rowspan="2" | [[Mapping]] | ||
| 0.3044 | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -160 101 }} | |||
| {{mapping| 202 320 }} | |||
| +0.3044 | |||
| 0.3045 | | 0.3045 | ||
| 5.13 | | 5.13 | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
|{{monzo|-13 17 -6}}, {{monzo|23 6 -14}} | | {{monzo| -13 17 -6 }}, {{monzo| 23 6 -14 }} | ||
|{{ | | {{mapping| 202 320 469 }} | ||
| 0.2280 | | +0.2280 | ||
| 0.2710 | | 0.2710 | ||
| 4.56 | | 4.56 | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7 | ||
|2401/2400, 19683/19600, 65625/65536 | | 2401/2400, 19683/19600, 65625/65536 | ||
|{{ | | {{mapping| 202 320 469 567 }} | ||
| 0.2164 | | +0.2164 | ||
| 0.2356 | | 0.2356 | ||
| 3.97 | | 3.97 | ||
|- | |- | ||
|2.3.5.7.11 | | 2.3.5.7.11 | ||
|243/242, 441/440, | | 243/242, 441/440, 4000/3993, 65625/65536 | ||
|{{ | | {{mapping| 202 320 469 567 699 }} | ||
| 0.1061 | | +0.1061 | ||
| 0.3049 | | 0.3049 | ||
| 5.13 | | 5.13 | ||
Line 47: | Line 54: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Generator | ! Periods<br />per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! Associated<br />ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|1 | | 1 | ||
|13\202 | | 13\202 | ||
|77.23 | | 77.23 | ||
|256/245 | | 256/245 | ||
|[[Tertiaseptal]] | | [[Tertiaseptal]] | ||
|- | |- | ||
|1 | | 1 | ||
|51\202 | | 51\202 | ||
|302.97 | | 302.97 | ||
|25/21 | | 25/21 | ||
|[[Quinmite]] | | [[Quinmite]] | ||
|- | |- | ||
|1 | | 1 | ||
|85\202 | | 85\202 | ||
|504.95 | | 504.95 | ||
|104976/78125 | | 104976/78125 | ||
|[[Countermeantone]] | | [[Countermeantone]] | ||
|- | |- | ||
|1 | | 1 | ||
|87\202 | | 87\202 | ||
|516.83 | | 516.83 | ||
|27/20 | | 27/20 | ||
|[[ | | [[Larry]] | ||
|- | |- | ||
|2 | | 2 | ||
|12\202 | | 12\202 | ||
|71.29 | | 71.29 | ||
|25/24 | | 25/24 | ||
|[[ | | [[Narayana]] | ||
|- | |- | ||
|2 | | 2 | ||
|87\202<br>(14\202) | | 87\202<br />(14\202) | ||
|516.83<br>(83.17) | | 516.83<br />(83.17) | ||
|27/20<br>(21/20) | | 27/20<br />(21/20) | ||
|[[Harry]] | | [[Harry]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | == Scales == | ||
* [[Jove1]] | * [[Jove1]], [[jove2]], [[jove3]], [[jove4]], [[jove5]], [[jove6]] | ||
* [[ | * [[Elfjove7]], [[elfjove8d]], [[elfjove10]], [[elfjove11c]], [[elfjove12]] | ||
* [[Oktone]] | |||
* [[ | |||
== Music == | == Music == | ||
[https://www.youtube.com/watch?v=_bNbb2o5K80 Home Planet Nostalgia] | ; [[Mundoworld]] | ||
* [https://www.youtube.com/watch?v=_bNbb2o5K80 ''Home Planet Nostalgia''] – in Oktone scale | |||
[[Category:Harry]] | [[Category:Harry]] | ||
[[Category:Tertiaseptal]] | [[Category:Tertiaseptal]] | ||
[[Category:Jove]] | [[Category:Jove]] | ||
[[Category:Rastmic]] | [[Category:Rastmic]] | ||
[[Category: | [[Category:Listen]] |
Latest revision as of 14:13, 20 February 2025
← 201edo | 202edo | 203edo → |
202 equal divisions of the octave (abbreviated 202edo or 202ed2), also called 202-tone equal temperament (202tet) or 202 equal temperament (202et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 202 equal parts of about 5.94 ¢ each. Each step represents a frequency ratio of 21/202, or the 202nd root of 2.
Theory
202et tempers out 2401/2400, 19683/19600 and 65625/65536 in the 7-limit, and 243/242, 441/440, 4000/3993 in the 11-limit. It also notably tempers out the quartisma. It is the optimal patent val for the 11-limit rank-2 temperaments harry and tertiaseptal, the rank-3 temperament jove tempering out 243/242 and 441/440, and the rank-4 rastmic temperament tempering out 243/242.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.96 | -0.18 | -0.51 | +1.16 | -2.90 | +1.98 | -0.48 | +1.43 | -1.85 | +1.50 |
Relative (%) | +0.0 | -16.2 | -2.9 | -8.6 | +19.5 | -48.9 | +33.3 | -8.1 | +24.0 | -31.2 | +25.2 | |
Steps (reduced) |
202 (0) |
320 (118) |
469 (65) |
567 (163) |
699 (93) |
747 (141) |
826 (18) |
858 (50) |
914 (106) |
981 (173) |
1001 (193) |
Subsets and supersets
Since 202 factors into 2 × 101, 202edo contains 2edo and 101edo as its subsets.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-160 101⟩ | [⟨202 320]] | +0.3044 | 0.3045 | 5.13 |
2.3.5 | [-13 17 -6⟩, [23 6 -14⟩ | [⟨202 320 469]] | +0.2280 | 0.2710 | 4.56 |
2.3.5.7 | 2401/2400, 19683/19600, 65625/65536 | [⟨202 320 469 567]] | +0.2164 | 0.2356 | 3.97 |
2.3.5.7.11 | 243/242, 441/440, 4000/3993, 65625/65536 | [⟨202 320 469 567 699]] | +0.1061 | 0.3049 | 5.13 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 13\202 | 77.23 | 256/245 | Tertiaseptal |
1 | 51\202 | 302.97 | 25/21 | Quinmite |
1 | 85\202 | 504.95 | 104976/78125 | Countermeantone |
1 | 87\202 | 516.83 | 27/20 | Larry |
2 | 12\202 | 71.29 | 25/24 | Narayana |
2 | 87\202 (14\202) |
516.83 (83.17) |
27/20 (21/20) |
Harry |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
Scales
- Jove1, jove2, jove3, jove4, jove5, jove6
- Elfjove7, elfjove8d, elfjove10, elfjove11c, elfjove12
- Oktone
Music
- Home Planet Nostalgia – in Oktone scale