21ed5/2: Difference between revisions
Jump to navigation
Jump to search
Created page with "{{Infobox ET}}" |
|||
(11 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
'''21ed5/2''' is the equal division of the [[5/2]] interval into 21 parts of approximately 75.539 [[cent]]s each. It roughly corresponds to [[16edo]]. | |||
== Theory == | |||
From a no-threes point of view, 21ed5/2 tempers out [[50/49]] in the 7-limit (being a jubilic system similar to [[13ed5/2]]), [[625/616]] and [[176/175]] in the 11-limit, and 143/140, 715/686 and [[847/845]] in the 13-limit. It is not particularly excellent as a no-threes system with the 5/4 and 7/4 being noticeably off, but can work for 5/2-equivalent jubilic. | |||
== Harmonics == | |||
{{Harmonics in equal | |||
| steps = 21 | |||
| num = 5 | |||
| denom = 2 | |||
}} | |||
{{Harmonics in equal | |||
| steps = 21 | |||
| num = 5 | |||
| denom = 2 | |||
| start = 12 | |||
| collapsed = 1 | |||
}} | |||
== Interval table == | |||
{|class="wikitable" | |||
|- | |||
!Steps | |||
!Cents | |||
![[5L 3s (5/2-equivalent)|Jubilic[8]]] notation | |||
!Approximate ratios* | |||
|- | |||
|0 | |||
|0.000 | |||
|J | |||
|[[1/1]] | |||
|- | |||
|1 | |||
|75.539 | |||
|J& | |||
|[[26/25]] | |||
|- | |||
|2 | |||
|151.078 | |||
|K@ | |||
|[[35/32]] | |||
|- | |||
|3 | |||
|226.616 | |||
|K | |||
|[[8/7]], [[28/25]] | |||
|- | |||
|4 | |||
|302.155 | |||
|K&, L@ | |||
|[[13/11]], [[77/64]] | |||
|- | |||
|5 | |||
|377.694 | |||
|L | |||
|[[5/4]], [[11/9]], [[16/13]], [[49/40]] | |||
|- | |||
|6 | |||
|453.233 | |||
|L& | |||
|[[13/10]], [[32/25]] | |||
|- | |||
|7 | |||
|528.771 | |||
|M@ | |||
|[[11/8]], [[35/26]] | |||
|- | |||
|8 | |||
|604.310 | |||
|M | |||
|[[7/5]], [[10/7]] | |||
|- | |||
|9 | |||
|679.849 | |||
|M& | |||
|[[16/11]], [[52/35]] | |||
|- | |||
|10 | |||
|755.388 | |||
|N@ | |||
|[[11/7]], [[20/13]], [[25/16]], [[49/32]] | |||
|- | |||
|11 | |||
|830.926 | |||
|N | |||
|[[8/5]], [[13/8]] | |||
|- | |||
|12 | |||
|906.465 | |||
|N&, O@ | |||
|[[22/13]], [[55/32]] | |||
|- | |||
|13 | |||
|982.004 | |||
|O | |||
|[[7/4]], [[25/14]] | |||
|- | |||
|14 | |||
|1057.543 | |||
|O& | |||
|[[13/7]], [[20/11]] | |||
|- | |||
|15 | |||
|1133.081 | |||
|P@ | |||
|[[25/13]] | |||
|- | |||
|16 | |||
|1208.620 | |||
|P | |||
|[[2/1]] | |||
|- | |||
|17 | |||
|1284.159 | |||
|P&, Q@ | |||
|[[52/25]] | |||
|- | |||
|18 | |||
|1359.698 | |||
|Q | |||
|[[11/5]] | |||
|- | |||
|19 | |||
|1435.236 | |||
|Q& | |||
|[[16/7]] | |||
|- | |||
|20 | |||
|1510.775 | |||
|J@ | |||
|[[26/11]] | |||
|- | |||
|21 | |||
|1586.314 | |||
|J | |||
|[[5/2]] | |||
|} | |||
<nowiki>*</nowiki> Based on treating 21ed5/2 as a no-threes 13-limit temperament |
Latest revision as of 08:36, 4 October 2024
← 20ed5/2 | 21ed5/2 | 22ed5/2 → |
(semiconvergent)
(semiconvergent)
21ed5/2 is the equal division of the 5/2 interval into 21 parts of approximately 75.539 cents each. It roughly corresponds to 16edo.
Theory
From a no-threes point of view, 21ed5/2 tempers out 50/49 in the 7-limit (being a jubilic system similar to 13ed5/2), 625/616 and 176/175 in the 11-limit, and 143/140, 715/686 and 847/845 in the 13-limit. It is not particularly excellent as a no-threes system with the 5/4 and 7/4 being noticeably off, but can work for 5/2-equivalent jubilic.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.6 | -13.5 | +17.2 | +8.6 | -4.9 | +30.4 | +25.9 | -27.0 | +17.2 | +3.3 | +3.8 |
Relative (%) | +11.4 | -17.9 | +22.8 | +11.4 | -6.4 | +40.3 | +34.2 | -35.7 | +22.8 | +4.4 | +5.0 | |
Steps (reduced) |
16 (16) |
25 (4) |
32 (11) |
37 (16) |
41 (20) |
45 (3) |
48 (6) |
50 (8) |
53 (11) |
55 (13) |
57 (15) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +16.3 | -36.5 | -4.9 | +34.5 | +5.1 | -18.4 | -36.4 | +25.9 | +16.9 | +11.9 | +10.5 |
Relative (%) | +21.5 | -48.3 | -6.4 | +45.6 | +6.7 | -24.3 | -48.2 | +34.2 | +22.4 | +15.8 | +13.9 | |
Steps (reduced) |
59 (17) |
60 (18) |
62 (20) |
64 (1) |
65 (2) |
66 (3) |
67 (4) |
69 (6) |
70 (7) |
71 (8) |
72 (9) |
Interval table
Steps | Cents | Jubilic[8] notation | Approximate ratios* |
---|---|---|---|
0 | 0.000 | J | 1/1 |
1 | 75.539 | J& | 26/25 |
2 | 151.078 | K@ | 35/32 |
3 | 226.616 | K | 8/7, 28/25 |
4 | 302.155 | K&, L@ | 13/11, 77/64 |
5 | 377.694 | L | 5/4, 11/9, 16/13, 49/40 |
6 | 453.233 | L& | 13/10, 32/25 |
7 | 528.771 | M@ | 11/8, 35/26 |
8 | 604.310 | M | 7/5, 10/7 |
9 | 679.849 | M& | 16/11, 52/35 |
10 | 755.388 | N@ | 11/7, 20/13, 25/16, 49/32 |
11 | 830.926 | N | 8/5, 13/8 |
12 | 906.465 | N&, O@ | 22/13, 55/32 |
13 | 982.004 | O | 7/4, 25/14 |
14 | 1057.543 | O& | 13/7, 20/11 |
15 | 1133.081 | P@ | 25/13 |
16 | 1208.620 | P | 2/1 |
17 | 1284.159 | P&, Q@ | 52/25 |
18 | 1359.698 | Q | 11/5 |
19 | 1435.236 | Q& | 16/7 |
20 | 1510.775 | J@ | 26/11 |
21 | 1586.314 | J | 5/2 |
* Based on treating 21ed5/2 as a no-threes 13-limit temperament