21/16: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenwolf (talk | contribs)
simplified links, precisions to 5 digits
Plumtree (talk | contribs)
m Normalising usage of Infobox Interval
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Infobox Interval
{{Infobox Interval
| JI glyph =
| Name = septimal subfourth, narrow fourth, 8ve-reduced 21st harmonic
| Ratio = 21/16
| Color name = z4, zo 4th
| Monzo = -4 1 0 1
| Cents = 470.78091
| Name = septimal sub-fourth
| Sound = jid_21_16_pluck_adu_dr220.mp3
| Sound = jid_21_16_pluck_adu_dr220.mp3
| Color name = z4, zo 4th
}}
}}
'''21/16''', the '''septimal sub-fourth''', is an interval of the [[7-limit|7 prime-limit]] measuring approximately 470.8¢. It is a narrow fourth, differing from the Pythagorean perfect fourth of [[4/3]] by [[64/63]], a microtone of approximately 27.3¢. It can be treated as the 21st overtone, octave reduced. Since 21 is 3*7, 21 can be also treated as the 3rd harmonic above the 7th or the 7th harmonic above the 3rd, or both. This identity can be made clear in a chord such as 8:12:14:21, which has a just perfect fifth of [[3/2]] between 8 and 12 as well as between 14 and 21. There are also two harmonic sevenths ([[7/4]]) in this chord, between 8 and 14 and between 12 and 21. The voicing of this chord is significant, as 3/2 sounds more consonant than its inversion 4/3 and 21/8 (an octave above 21/16) sounds more consonant than 21/16.
 
'''21/16''', the '''septimal subfourth''', is a [[7-limit]] interval measuring approximately 470.8¢. It is a narrow fourth, differing from the Pythagorean perfect fourth of [[4/3]] by [[64/63]], a microtone of approximately 27.3¢. It can be treated as the 21st overtone, octave reduced. Since 21 is 3 × 7, 21 can be also treated as the 3rd harmonic above the 7th or the 7th harmonic above the 3rd, or both. This identity can be made clear in a chord such as 8:12:14:21, which has a just perfect fifth of [[3/2]] between 8 and 12 as well as between 14 and 21. There are also two harmonic sevenths ([[7/4]]) in this chord, between 8 and 14 and between 12 and 21. The voicing of this chord is significant, as 3/2 sounds more consonant than its inversion 4/3 and 21/8 (an octave above 21/16) sounds more consonant than 21/16.


21/16 is [[21/20]] away from [[5/4]]. This is an interval of about 84.5¢, a small semitone. This introduces the possibility of treating 21/16 as a dissonance to resolve down to 5/4. It can just as easily step up to 3/2 by [[8/7]], the septimal supermajor 2nd of about 231.2¢, a consonance in its own right. In an [[11-limit]] system, [[11/8]] is also nearby, so that 21/16 can step up by the small semitone of [[22/21]] (about 80.5¢) to 11/8. These are all movements that assume an unchanging fundamental, of course, and other movements are possible.
21/16 is [[21/20]] away from [[5/4]]. This is an interval of about 84.5¢, a small semitone. This introduces the possibility of treating 21/16 as a dissonance to resolve down to 5/4. It can just as easily step up to 3/2 by [[8/7]], the septimal supermajor 2nd of about 231.2¢, a consonance in its own right. In an [[11-limit]] system, [[11/8]] is also nearby, so that 21/16 can step up by the small semitone of [[22/21]] (about 80.5¢) to 11/8. These are all movements that assume an unchanging fundamental, of course, and other movements are possible.
Line 14: Line 11:
The 7-limit is known for its subminor and supermajor 2nds, 3rds, 6ths and 7ths. 21/16 is also an essential interval of the 7-limit and worth distinguishing.
The 7-limit is known for its subminor and supermajor 2nds, 3rds, 6ths and 7ths. 21/16 is also an essential interval of the 7-limit and worth distinguishing.


:''See also [[Gallery of Just Intervals]]''
In [[septimal meantone]], this interval is represented by the augmented third.
 
== See also ==
* [[32/21]] – its [[octave complement]]
* [[8/7]] – its [[fifth complement]]
* [[Gallery of just intervals]]


[[Category:7-limit]]
[[Category:Subfourth]]
[[Category:Fourth]]
[[Category:Fourth]]
[[Category:Interval]]
[[Category:Just interval]]
[[Category:Ratio]]

Latest revision as of 12:26, 25 October 2022

Interval information
Ratio 21/16
Factorization 2-4 × 3 × 7
Monzo [-4 1 0 1
Size in cents 470.7809¢
Names septimal subfourth,
narrow fourth,
8ve-reduced 21st harmonic
Color name z4, zo 4th
FJS name [math]\displaystyle{ \text{P4}^{7} }[/math]
Special properties reduced,
reduced harmonic
Tenney height (log2 nd) 8.39232
Weil height (log2 max(n, d)) 8.78463
Wilson height (sopfr(nd)) 18

[sound info]
Open this interval in xen-calc

21/16, the septimal subfourth, is a 7-limit interval measuring approximately 470.8¢. It is a narrow fourth, differing from the Pythagorean perfect fourth of 4/3 by 64/63, a microtone of approximately 27.3¢. It can be treated as the 21st overtone, octave reduced. Since 21 is 3 × 7, 21 can be also treated as the 3rd harmonic above the 7th or the 7th harmonic above the 3rd, or both. This identity can be made clear in a chord such as 8:12:14:21, which has a just perfect fifth of 3/2 between 8 and 12 as well as between 14 and 21. There are also two harmonic sevenths (7/4) in this chord, between 8 and 14 and between 12 and 21. The voicing of this chord is significant, as 3/2 sounds more consonant than its inversion 4/3 and 21/8 (an octave above 21/16) sounds more consonant than 21/16.

21/16 is 21/20 away from 5/4. This is an interval of about 84.5¢, a small semitone. This introduces the possibility of treating 21/16 as a dissonance to resolve down to 5/4. It can just as easily step up to 3/2 by 8/7, the septimal supermajor 2nd of about 231.2¢, a consonance in its own right. In an 11-limit system, 11/8 is also nearby, so that 21/16 can step up by the small semitone of 22/21 (about 80.5¢) to 11/8. These are all movements that assume an unchanging fundamental, of course, and other movements are possible.

The 7-limit is known for its subminor and supermajor 2nds, 3rds, 6ths and 7ths. 21/16 is also an essential interval of the 7-limit and worth distinguishing.

In septimal meantone, this interval is represented by the augmented third.

See also