368edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Fredg999 category edits (talk | contribs)
m Sort key
Plumtree (talk | contribs)
m Infobox ET added
Line 1: Line 1:
{{Infobox ET}}
'''368edo''' is the [[EDO|equal division of the octave]] into 368 parts of 3.26087 [[cent]]s each. It tempers out 1220703125/1207959552 (ditonma) and 205891132094649/204800000000000 in the 5-limit; 4375/4374, 16875/16807, and 33756345/33554432 in the 7-limit. Using the patent val, it tempers out 540/539, 1375/1372, and 4000/3993 in the 11-limit; 2205/2197, 4225/4224, and 10648/10647 in the 13-limit.
'''368edo''' is the [[EDO|equal division of the octave]] into 368 parts of 3.26087 [[cent]]s each. It tempers out 1220703125/1207959552 (ditonma) and 205891132094649/204800000000000 in the 5-limit; 4375/4374, 16875/16807, and 33756345/33554432 in the 7-limit. Using the patent val, it tempers out 540/539, 1375/1372, and 4000/3993 in the 11-limit; 2205/2197, 4225/4224, and 10648/10647 in the 13-limit.



Revision as of 21:52, 4 October 2022

← 367edo 368edo 369edo →
Prime factorization 24 × 23
Step size 3.26087 ¢ 
Fifth 215\368 (701.087 ¢)
Semitones (A1:m2) 33:29 (107.6 ¢ : 94.57 ¢)
Consistency limit 7
Distinct consistency limit 7

368edo is the equal division of the octave into 368 parts of 3.26087 cents each. It tempers out 1220703125/1207959552 (ditonma) and 205891132094649/204800000000000 in the 5-limit; 4375/4374, 16875/16807, and 33756345/33554432 in the 7-limit. Using the patent val, it tempers out 540/539, 1375/1372, and 4000/3993 in the 11-limit; 2205/2197, 4225/4224, and 10648/10647 in the 13-limit.

Related regular temperaments

368edo supports the 11-limit octoid temperament. Alternative 368f val supports the 13-limit octoid, and 368fff val supports the octopus temperament.

368edo is very nearly the POTE tuning of 23-limit icositritonic temperament (46&161, named by Xenllium), which is supported by 46edo, 115edo, 161edo, 207edo, and the 368ci val.

Related scales

Icositritonic scales