148418edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
mNo edit summary
De-emphasise zeta a little
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
{{ED intro}}
{{ED intro}}


148418edo is a [[zeta peak edo]], distinctly [[consistent]] through the [[39-odd-limit]]. It marks the first equal temperament with lower [[Tenney-Euclidean temperament measures #TE simple badness|relative error]]s after [[16808edo|16808]] in the 23-, 29-, and 31-limit, the first after 83096 in the 37-limit, and the first after 95524 in the 41-limit. Some of the simpler commas it tempers out include 408761/408760, 453376/453375, 509796/509795, 601426/601425, 633556/633555, 709632/709631, 949026/949025, 1154440/1154439, 1163800/1163799, 1255501/1255500, 2023425/2023424, 2307361/2307360, 2697696/2697695, 3897166/3897165, 4096576/4096575, and 5909761/5909760.  
148418edo is a very strong higher-limit tuning, distinctly [[consistent]] through the [[39-odd-limit]], and is a [[zeta peak edo]]. It marks the first equal temperament with lower [[Tenney-Euclidean temperament measures #TE simple badness|relative error]]s after [[16808edo|16808]] in the [[23-limit|23-]], [[29-limit|29-]], and [[31-limit]], the first after 83096 in the [[37-limit]], and the first after 95524 in the [[41-limit]]. Some of the simpler commas it tempers out include 408761/408760, 453376/453375, 509796/509795, 601426/601425, 633556/633555, 709632/709631, 949026/949025, 1154440/1154439, 1163800/1163799, 1255501/1255500, 2023425/2023424, 2307361/2307360, 2697696/2697695, 3897166/3897165, 4096576/4096575, and 5909761/5909760.  


=== Prime harmonics ===
=== Prime harmonics ===

Latest revision as of 14:17, 30 July 2025

← 148417edo 148418edo 148419edo →
Prime factorization 2 × 74209
Step size 0.00808527 ¢ 
Fifth 86819\148418 (701.955 ¢)
Semitones (A1:m2) 14061:11159 (113.7 ¢ : 90.22 ¢)
Consistency limit 39
Distinct consistency limit 39

148418 equal divisions of the octave (abbreviated 148418edo or 148418ed2), also called 148418-tone equal temperament (148418tet) or 148418 equal temperament (148418et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 148418 equal parts of about 0.00809 ¢ each. Each step represents a frequency ratio of 21/148418, or the 148418th root of 2.

148418edo is a very strong higher-limit tuning, distinctly consistent through the 39-odd-limit, and is a zeta peak edo. It marks the first equal temperament with lower relative errors after 16808 in the 23-, 29-, and 31-limit, the first after 83096 in the 37-limit, and the first after 95524 in the 41-limit. Some of the simpler commas it tempers out include 408761/408760, 453376/453375, 509796/509795, 601426/601425, 633556/633555, 709632/709631, 949026/949025, 1154440/1154439, 1163800/1163799, 1255501/1255500, 2023425/2023424, 2307361/2307360, 2697696/2697695, 3897166/3897165, 4096576/4096575, and 5909761/5909760.

Prime harmonics

Approximation of prime harmonics in 148418edo
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +0.00000 +0.00029 +0.00061 -0.00002 +0.00063 +0.00112 -0.00048 +0.00076 -0.00015
Relative (%) +0.0 +3.6 +7.6 -0.3 +7.8 +13.8 -6.0 +9.4 -1.8
Steps
(reduced)
148418
(0)
235237
(86819)
344616
(47780)
416662
(119826)
513442
(68188)
549212
(103958)
606653
(12981)
630469
(36797)
671378
(77706)
Approximation of prime harmonics in 148418edo (continued)
Harmonic 29 31 37 41 43 47 53 59 61
Error Absolute (¢) +0.00143 +0.00074 +0.00283 -0.00124 -0.00293 +0.00026 -0.00403 -0.00094 -0.00141
Relative (%) +17.7 +9.2 +35.0 -15.3 -36.2 +3.2 -49.8 -11.6 -17.4
Steps
(reduced)
721012
(127340)
735292
(141620)
773177
(31087)
795157
(53067)
805355
(63265)
824401
(82311)
850126
(108036)
873090
(131000)
880228
(138138)

Subsets and supersets

Since 148418 factors into primes as 2 × 74209, 148418edo has subset edos 2 and 74209.