Lumatone mapping for 37edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
mNo edit summary
m Antidiatonic: Was missing a period
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
There are many conceivable ways to map [[37edo]] onto the [[Lumatone]] keyboard. Only one, however, agrees with the [[Standard Lumatone mapping for Pythagorean]].
{{Lumatone mapping intro}}
 
== Diatonic ==
{{Lumatone EDO mapping|n=37|start=10|xstep=7|ystep=-6}}
{{Lumatone EDO mapping|n=37|start=10|xstep=7|ystep=-6}}


However, as the perfect 5th is very sharp, neither this or the b val give easy access to the 5th harmonic. If you want an arrangement that makes it easy to play the best note combinations together the [[porcupine]] mapping is considerably superior.  
== Antidiatonic ==
Since the perfect fifth is so sharp, you lose little accuracy by using the flat fifth as a generator instead, which can be interpreted as near equalised [[mavila]], or more accurately but complexly as [[undecimation]].
{{Lumatone EDO mapping|n=37|start=23|xstep=5|ystep=1}}
 
== Diatonicized Chromaticism via Rotated Antidiatonic ==
[[Bryan Deister]] has demonstrated a rotated antidiatonic ([[2L 5s]]) mapping in [https://www.youtube.com/shorts/e7dLJTsS3PQ ''37edo''] (2025), using the Mavila (sub-)fifth (21\37) as a generator. This yields a range of over five octaves, although the note 0 positions alternate between middle and near/far. (In the demonstration video, active keys on the Lumatone are cut back at both the left and right edges to yield exactly five octaves.) With this mapping, notes of the [[11L 2s]] scale line up in pairs of row segments (of 6\37 offset from each other by the large MOSstep 3\37, and cut by the small MOSstep 2\37), which may make this mapping attractive for users wishing to play [[Ivan Wyschnegradsky]]'s Diatonicized Chromatic scale in a tuning system different from [[24edo]], while still retaining respectable (though not full piano) range.
 
{{Lumatone EDO mapping|n=37|start=29|xstep=6|ystep=-1}}
 
== Porcupine ==
However, none of these are the most efficient when it comes to comfortably fingering simple chords. If you want an arrangement that makes it easy to play the best note combinations together, the [[1L 6s]] mapping for [[Porcupine]] is considerably superior.  
{{Lumatone EDO mapping|n=37|start=10|xstep=5|ystep=2}}
{{Lumatone EDO mapping|n=37|start=10|xstep=5|ystep=2}}


If you want to maximise your range, the [[Chromatic_pairs#Gariberttet|Gariberttet]] mapping is probably the clearest arrangement that gives access to the full gamut.
== Others ==
If you want to maximise your range, the [[Subgroup temperaments#Gariberttet|Gariberttet]] mapping is probably the clearest arrangement that gives access to the full gamut.
{{Lumatone EDO mapping|n=37|start=21|xstep=9|ystep=-8}}
{{Lumatone EDO mapping|n=37|start=21|xstep=9|ystep=-8}}


{{Lumatone mapping navigation}}
{{Navbox Lumatone}}
 
[[Category:Lumatone mappings]] [[Category:37edo]]

Latest revision as of 18:25, 9 July 2025

There are many conceivable ways to map 37edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.

Diatonic

10
17
11
18
25
32
2
5
12
19
26
33
3
10
17
6
13
20
27
34
4
11
18
25
32
2
0
7
14
21
28
35
5
12
19
26
33
3
10
17
1
8
15
22
29
36
6
13
20
27
34
4
11
18
25
32
2
32
2
9
16
23
30
0
7
14
21
28
35
5
12
19
26
33
3
10
17
33
3
10
17
24
31
1
8
15
22
29
36
6
13
20
27
34
4
11
18
25
32
2
27
34
4
11
18
25
32
2
9
16
23
30
0
7
14
21
28
35
5
12
19
26
33
3
10
17
35
5
12
19
26
33
3
10
17
24
31
1
8
15
22
29
36
6
13
20
27
34
4
11
18
25
32
2
13
20
27
34
4
11
18
25
32
2
9
16
23
30
0
7
14
21
28
35
5
12
19
26
33
3
35
5
12
19
26
33
3
10
17
24
31
1
8
15
22
29
36
6
13
20
27
34
4
13
20
27
34
4
11
18
25
32
2
9
16
23
30
0
7
14
21
28
35
35
5
12
19
26
33
3
10
17
24
31
1
8
15
22
29
36
13
20
27
34
4
11
18
25
32
2
9
16
23
30
35
5
12
19
26
33
3
10
17
24
31
13
20
27
34
4
11
18
25
35
5
12
19
26
13
20

Antidiatonic

Since the perfect fifth is so sharp, you lose little accuracy by using the flat fifth as a generator instead, which can be interpreted as near equalised mavila, or more accurately but complexly as undecimation.

23
28
29
34
2
7
12
30
35
3
8
13
18
23
28
36
4
9
14
19
24
29
34
2
7
12
0
5
10
15
20
25
30
35
3
8
13
18
23
28
6
11
16
21
26
31
36
4
9
14
19
24
29
34
2
7
12
7
12
17
22
27
32
0
5
10
15
20
25
30
35
3
8
13
18
23
28
13
18
23
28
33
1
6
11
16
21
26
31
36
4
9
14
19
24
29
34
2
7
12
14
19
24
29
34
2
7
12
17
22
27
32
0
5
10
15
20
25
30
35
3
8
13
18
23
28
25
30
35
3
8
13
18
23
28
33
1
6
11
16
21
26
31
36
4
9
14
19
24
29
34
2
7
12
4
9
14
19
24
29
34
2
7
12
17
22
27
32
0
5
10
15
20
25
30
35
3
8
13
18
25
30
35
3
8
13
18
23
28
33
1
6
11
16
21
26
31
36
4
9
14
19
24
4
9
14
19
24
29
34
2
7
12
17
22
27
32
0
5
10
15
20
25
25
30
35
3
8
13
18
23
28
33
1
6
11
16
21
26
31
4
9
14
19
24
29
34
2
7
12
17
22
27
32
25
30
35
3
8
13
18
23
28
33
1
4
9
14
19
24
29
34
2
25
30
35
3
8
4
9

Diatonicized Chromaticism via Rotated Antidiatonic

Bryan Deister has demonstrated a rotated antidiatonic (2L 5s) mapping in 37edo (2025), using the Mavila (sub-)fifth (21\37) as a generator. This yields a range of over five octaves, although the note 0 positions alternate between middle and near/far. (In the demonstration video, active keys on the Lumatone are cut back at both the left and right edges to yield exactly five octaves.) With this mapping, notes of the 11L 2s scale line up in pairs of row segments (of 6\37 offset from each other by the large MOSstep 3\37, and cut by the small MOSstep 2\37), which may make this mapping attractive for users wishing to play Ivan Wyschnegradsky's Diatonicized Chromatic scale in a tuning system different from 24edo, while still retaining respectable (though not full piano) range.

29
35
34
3
9
15
21
33
2
8
14
20
26
32
1
1
7
13
19
25
31
0
6
12
18
24
0
6
12
18
24
30
36
5
11
17
23
29
35
4
5
11
17
23
29
35
4
10
16
22
28
34
3
9
15
21
27
4
10
16
22
28
34
3
9
15
21
27
33
2
8
14
20
26
32
1
7
9
15
21
27
33
2
8
14
20
26
32
1
7
13
19
25
31
0
6
12
18
24
30
8
14
20
26
32
1
7
13
19
25
31
0
6
12
18
24
30
36
5
11
17
23
29
35
4
10
19
25
31
0
6
12
18
24
30
36
5
11
17
23
29
35
4
10
16
22
28
34
3
9
15
21
27
33
36
5
11
17
23
29
35
4
10
16
22
28
34
3
9
15
21
27
33
2
8
14
20
26
32
1
22
28
34
3
9
15
21
27
33
2
8
14
20
26
32
1
7
13
19
25
31
0
6
2
8
14
20
26
32
1
7
13
19
25
31
0
6
12
18
24
30
36
5
25
31
0
6
12
18
24
30
36
5
11
17
23
29
35
4
10
5
11
17
23
29
35
4
10
16
22
28
34
3
9
28
34
3
9
15
21
27
33
2
8
14
8
14
20
26
32
1
7
13
31
0
6
12
18
11
17

Porcupine

However, none of these are the most efficient when it comes to comfortably fingering simple chords. If you want an arrangement that makes it easy to play the best note combinations together, the 1L 6s mapping for Porcupine is considerably superior.

10
15
17
22
27
32
0
19
24
29
34
2
7
12
17
26
31
36
4
9
14
19
24
29
34
2
28
33
1
6
11
16
21
26
31
36
4
9
14
19
35
3
8
13
18
23
28
33
1
6
11
16
21
26
31
36
4
0
5
10
15
20
25
30
35
3
8
13
18
23
28
33
1
6
11
16
21
7
12
17
22
27
32
0
5
10
15
20
25
30
35
3
8
13
18
23
28
33
1
6
9
14
19
24
29
34
2
7
12
17
22
27
32
0
5
10
15
20
25
30
35
3
8
13
18
23
21
26
31
36
4
9
14
19
24
29
34
2
7
12
17
22
27
32
0
5
10
15
20
25
30
35
3
8
1
6
11
16
21
26
31
36
4
9
14
19
24
29
34
2
7
12
17
22
27
32
0
5
10
15
23
28
33
1
6
11
16
21
26
31
36
4
9
14
19
24
29
34
2
7
12
17
22
3
8
13
18
23
28
33
1
6
11
16
21
26
31
36
4
9
14
19
24
25
30
35
3
8
13
18
23
28
33
1
6
11
16
21
26
31
5
10
15
20
25
30
35
3
8
13
18
23
28
33
27
32
0
5
10
15
20
25
30
35
3
7
12
17
22
27
32
0
5
29
34
2
7
12
9
14

Others

If you want to maximise your range, the Gariberttet mapping is probably the clearest arrangement that gives access to the full gamut.

21
30
22
31
3
12
21
14
23
32
4
13
22
31
3
15
24
33
5
14
23
32
4
13
22
31
7
16
25
34
6
15
24
33
5
14
23
32
4
13
8
17
26
35
7
16
25
34
6
15
24
33
5
14
23
32
4
0
9
18
27
36
8
17
26
35
7
16
25
34
6
15
24
33
5
14
23
1
10
19
28
0
9
18
27
36
8
17
26
35
7
16
25
34
6
15
24
33
5
14
30
2
11
20
29
1
10
19
28
0
9
18
27
36
8
17
26
35
7
16
25
34
6
15
24
33
3
12
21
30
2
11
20
29
1
10
19
28
0
9
18
27
36
8
17
26
35
7
16
25
34
6
15
24
22
31
3
12
21
30
2
11
20
29
1
10
19
28
0
9
18
27
36
8
17
26
35
7
16
25
13
22
31
3
12
21
30
2
11
20
29
1
10
19
28
0
9
18
27
36
8
17
26
32
4
13
22
31
3
12
21
30
2
11
20
29
1
10
19
28
0
9
18
23
32
4
13
22
31
3
12
21
30
2
11
20
29
1
10
19
5
14
23
32
4
13
22
31
3
12
21
30
2
11
33
5
14
23
32
4
13
22
31
3
12
15
24
33
5
14
23
32
4
6
15
24
33
5
25
34


ViewTalkEditLumatone mappings 
34edo35edo36edoLumatone mapping for 37edo38edo39edo40edo