56ed5: Difference between revisions
Jump to navigation
Jump to search
m Todo collapsible |
ArrowHead294 (talk | contribs) |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
==Intervals== | == Theory == | ||
{| class="wikitable mw-collapsible" | 56ed5 is related to 24edo, but with the 5th harmonic rather than the [[2/1|octave]] being just. The octave is compressed by about 5.8{{c}}, a small but significant deviation. This tuning has a [[meantone]] fifth as the number of divisions of the 5th harmonic is multiple of 4. This tuning is also a [[hyperpyth]], tempering out 135/133, 171/169, 225/221, and 1521/1445 in the patent val. | ||
=== Harmonics === | |||
{{Harmonics in equal|56|5|1|intervals=integer|columns=11}} | |||
{{Harmonics in equal|56|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 56ed5 (continued)}} | |||
=== Subsets and supersets === | |||
Since 56 factors into primes as {{nowrap| 2<sup>3</sup> × 7 }}, 56ed5 contains subset ed5's {{EDs|equave=5| 2, 4, 7, 8, 14, and 28 }}. | |||
== Intervals == | |||
{| class="wikitable center-1 right-2 mw-collapsible" | |||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Approximated ratios | ||
|- | |- | ||
| 0 | |||
| 0.0 | |||
| | | 1/1 | ||
|- | |- | ||
| 1 | |||
| 49.8 | |||
| | | 35/34, 36/35 | ||
|- | |- | ||
| 2 | |||
| 99.5 | |||
| | | 18/17 | ||
|- | |- | ||
| 3 | |||
| 149.3 | |||
| | | 12/11 | ||
|- | |- | ||
| 4 | |||
| 199.0 | |||
| | | 55/49 | ||
|- | |- | ||
| 5 | |||
| 248.8 | |||
| | | 15/13 | ||
|- | |- | ||
| 6 | |||
| 298.5 | |||
| | | 19/16 | ||
|- | |- | ||
| 7 | |||
| 348.3 | |||
| | | 11/9 | ||
|- | |- | ||
| 8 | |||
| 398.0 | |||
| | | 5/4 | ||
|- | |- | ||
| 9 | |||
| 447.8 | |||
| 35/27 | |||
|- | |- | ||
| 10 | |||
| 497.6 | |||
| | | 4/3 | ||
|- | |- | ||
| 11 | |||
| 547.3 | |||
| 70/51 | |||
|- | |- | ||
| 12 | |||
| 597.1 | |||
| | | 24/17 | ||
|- | |- | ||
| 13 | |||
| 646.8 | |||
| | |||
|- | |- | ||
| 14 | |||
| 696.6 | |||
| 3/2 | |||
| | |||
|- | |- | ||
| 15 | |||
| 746.3 | |||
| | | 20/13 | ||
|- | |- | ||
| 16 | |||
| 796.1 | |||
| | | 19/12 | ||
|- | |- | ||
| 17 | |||
| 845.8 | |||
| 44/27, 75/46 | |||
|- | |- | ||
| 18 | |||
| 895.6 | |||
| | | 5/3 | ||
|- | |- | ||
| 19 | |||
| 945.4 | |||
| | | 19/11 | ||
|- | |- | ||
| 20 | |||
| 995.1 | |||
| | | 9/5, 16/9 | ||
|- | |- | ||
| 21 | |||
| 1044.9 | |||
| 64/35 | |||
|- | |- | ||
| 22 | |||
| 1094.6 | |||
| | | 32/17 | ||
|- | |- | ||
| 23 | |||
| 1144.4 | |||
| | |||
|- | |- | ||
| 24 | |||
| 1194.1 | |||
| | | 2/1 | ||
|- | |- | ||
| 25 | |||
| 1243.9 | |||
| | | 39/19, 80/39 | ||
|- | |- | ||
| 26 | |||
| 1293.6 | |||
| 19/9 | |||
|- | |- | ||
| 27 | |||
| 1343.4 | |||
| 50/23 | |||
|- | |- | ||
| 28 | |||
| 1393.2 | |||
| 38/17, 85/38 | |||
|- | |- | ||
| 29 | |||
| 1442.9 | |||
| 23/10 | |||
|- | |- | ||
| 30 | |||
| 1492.7 | |||
| 45/19 | |||
|- | |- | ||
| 31 | |||
| 1542.4 | |||
| 39/16 | |||
|- | |- | ||
| 32 | |||
| 1592.2 | |||
| 5/2 | |||
| | |||
|- | |- | ||
| 33 | |||
| 1641.9 | |||
| 13/5 | |||
| | |||
|- | |- | ||
| 34 | |||
| 1691.7 | |||
| 85/32 | |||
|- | |- | ||
| 35 | |||
| 1741.4 | |||
| 175/64 | |||
|- | |- | ||
| 36 | |||
| 1791.2 | |||
| 45/16 | |||
|- | |- | ||
| 37 | |||
| | | 1841.0 | ||
| 55/19 | |||
|- | |- | ||
| 38 | |||
| 1890.7 | |||
| | | 3/1 | ||
|- | |- | ||
| 39 | |||
| 1940.5 | |||
| 46/15, 135/44 | |||
|- | |- | ||
| 40 | |||
| 1990.2 | |||
| 60/19 | |||
|- | |- | ||
| 41 | |||
| | | 2040.0 | ||
| | | 13/4 | ||
|- | |- | ||
| 42 | |||
| 2089.7 | |||
| 10/3 | |||
| | |||
|- | |- | ||
| 43 | |||
| 2139.5 | |||
| 17/5 | |||
|- | |- | ||
| 44 | |||
| 2189.2 | |||
| 85/24 | |||
|- | |- | ||
| 45 | |||
| 2239.0 | |||
| 51/14 | |||
|- | |- | ||
| 46 | |||
| 2288.8 | |||
| | | 15/4, 19/5 | ||
|- | |- | ||
| 47 | |||
| 2338.5 | |||
| 27/7 | |||
|- | |- | ||
| 48 | |||
| 2388.3 | |||
| | | 4/1 | ||
|- | |- | ||
| 49 | |||
| 2438.0 | |||
| 45/11 | |||
|- | |- | ||
| 50 | |||
| 2487.8 | |||
| 21/5 | |||
|- | |- | ||
| 51 | |||
| 2537.5 | |||
| | | 13/3 | ||
|- | |- | ||
| 52 | |||
| 2587.3 | |||
| 49/11 | |||
|- | |- | ||
| 53 | |||
| 2637.0 | |||
| 55/12 | |||
|- | |- | ||
| 54 | |||
| 2686.8 | |||
| 85/18 | |||
|- | |- | ||
| 55 | |||
| 2736.6 | |||
| 34/7 | |||
|- | |- | ||
| 56 | |||
| 2786.3 | |||
| | | 5/1 | ||
|} | |} | ||
== | == See also == | ||
* [[14edf]] – relative edf | |||
* [[24edo]] – relative edo | |||
* [[38edt]] – relative edt | |||
* [[62ed6]] – relative ed6 | |||
* [[83ed11]] – relative ed11 | |||
* [[86ed12]] – relative ed12 | |||
* [[198ed304]] – close to the zeta-optimized tuning for 24edo | |||
[[Category:24edo]] |
Latest revision as of 19:18, 25 June 2025
← 55ed5 | 56ed5 | 57ed5 → |
56 equal divisions of the 5th harmonic (abbreviated 56ed5) is a nonoctave tuning system that divides the interval of 5/1 into 56 equal parts of about 49.8 ¢ each. Each step represents a frequency ratio of 51/56, or the 56th root of 5.
Theory
56ed5 is related to 24edo, but with the 5th harmonic rather than the octave being just. The octave is compressed by about 5.8 ¢, a small but significant deviation. This tuning has a meantone fifth as the number of divisions of the 5th harmonic is multiple of 4. This tuning is also a hyperpyth, tempering out 135/133, 171/169, 225/221, and 1521/1445 in the patent val.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.9 | -11.2 | -11.7 | +0.0 | -17.1 | +14.6 | -17.6 | -22.5 | -5.9 | -21.6 | -23.0 |
Relative (%) | -11.8 | -22.6 | -23.6 | +0.0 | -34.4 | +29.3 | -35.4 | -45.2 | -11.8 | -43.4 | -46.2 | |
Steps (reduced) |
24 (24) |
38 (38) |
48 (48) |
56 (0) |
62 (6) |
68 (12) |
72 (16) |
76 (20) |
80 (24) |
83 (27) |
86 (30) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -12.3 | +8.7 | -11.2 | -23.5 | +20.8 | +21.4 | -22.4 | -11.7 | +3.3 | +22.3 | -4.9 | +20.9 |
Relative (%) | -24.7 | +17.5 | -22.6 | -47.2 | +41.9 | +43.0 | -45.1 | -23.6 | +6.7 | +44.8 | -9.9 | +42.0 | |
Steps (reduced) |
89 (33) |
92 (36) |
94 (38) |
96 (40) |
99 (43) |
101 (45) |
102 (46) |
104 (48) |
106 (50) |
108 (52) |
109 (53) |
111 (55) |
Subsets and supersets
Since 56 factors into primes as 23 × 7, 56ed5 contains subset ed5's 2, 4, 7, 8, 14, and 28.
Intervals
# | Cents | Approximated ratios |
---|---|---|
0 | 0.0 | 1/1 |
1 | 49.8 | 35/34, 36/35 |
2 | 99.5 | 18/17 |
3 | 149.3 | 12/11 |
4 | 199.0 | 55/49 |
5 | 248.8 | 15/13 |
6 | 298.5 | 19/16 |
7 | 348.3 | 11/9 |
8 | 398.0 | 5/4 |
9 | 447.8 | 35/27 |
10 | 497.6 | 4/3 |
11 | 547.3 | 70/51 |
12 | 597.1 | 24/17 |
13 | 646.8 | |
14 | 696.6 | 3/2 |
15 | 746.3 | 20/13 |
16 | 796.1 | 19/12 |
17 | 845.8 | 44/27, 75/46 |
18 | 895.6 | 5/3 |
19 | 945.4 | 19/11 |
20 | 995.1 | 9/5, 16/9 |
21 | 1044.9 | 64/35 |
22 | 1094.6 | 32/17 |
23 | 1144.4 | |
24 | 1194.1 | 2/1 |
25 | 1243.9 | 39/19, 80/39 |
26 | 1293.6 | 19/9 |
27 | 1343.4 | 50/23 |
28 | 1393.2 | 38/17, 85/38 |
29 | 1442.9 | 23/10 |
30 | 1492.7 | 45/19 |
31 | 1542.4 | 39/16 |
32 | 1592.2 | 5/2 |
33 | 1641.9 | 13/5 |
34 | 1691.7 | 85/32 |
35 | 1741.4 | 175/64 |
36 | 1791.2 | 45/16 |
37 | 1841.0 | 55/19 |
38 | 1890.7 | 3/1 |
39 | 1940.5 | 46/15, 135/44 |
40 | 1990.2 | 60/19 |
41 | 2040.0 | 13/4 |
42 | 2089.7 | 10/3 |
43 | 2139.5 | 17/5 |
44 | 2189.2 | 85/24 |
45 | 2239.0 | 51/14 |
46 | 2288.8 | 15/4, 19/5 |
47 | 2338.5 | 27/7 |
48 | 2388.3 | 4/1 |
49 | 2438.0 | 45/11 |
50 | 2487.8 | 21/5 |
51 | 2537.5 | 13/3 |
52 | 2587.3 | 49/11 |
53 | 2637.0 | 55/12 |
54 | 2686.8 | 85/18 |
55 | 2736.6 | 34/7 |
56 | 2786.3 | 5/1 |