|
|
(15 intermediate revisions by 8 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-03-05 20:34:53 UTC</tt>.<br>
| |
| : The original revision id was <tt>543142144</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This scale coincidentally turns out to be 16 equal divisions of a stretched octave (1217.25 cents) and a tritave twin of the Armodue/Hornbostel flat third-tone system (6th=1065.095 cents, squared=2130.19 cents=228.235 cents, cubed=1293.33 cents, fourth power=2358.425 cents=456.47 cents).
| |
| ||~ Degree ||~ cents ||~ Armodue name ||
| |
| || 1\25 || 76.08 || 1#/2bb ||
| |
| || 2\25 || 152.16 || 1x/2b ||
| |
| || 3\25 || 228.235 || 2 ||
| |
| || 4\25 || 304.31 || 2#/3bb ||
| |
| || 5\25 || 380.39 || 2x/3b ||
| |
| || 6\25 || 456.47 || 3 ||
| |
| || 7\25 || 532.55 || 3#/4b ||
| |
| || 8\25 || 608.625 || 4 ||
| |
| || 9\25 || 684.70 || 4#/5bb ||
| |
| || 10\25 || 760.78 || 4x/5b ||
| |
| || 11\25 || 836.86 || 5 ||
| |
| || 12\25 || 912.94 || 5#/6bb ||
| |
| || 13\25 || 989.02 || 5x/6b ||
| |
| || 14\25 || 1065.095 || 6 ||
| |
| || 15\25 || 1141.17 || 6#/7bb ||
| |
| || 16\25 || 1217.25 || 6x/7b ||
| |
| || 17\25 || 1293.33 || 7 ||
| |
| || 18\25 || 1369.41 || 7#/8b ||
| |
| || 19\25 || 1445.485 || 8 ||
| |
| || 20\25 || 1521.56 || 8#/9bb ||
| |
| || 21\25 || 1597.64 || 8x/9b ||
| |
| || 22\25 || 1673.72 || 9 ||
| |
| || 23\25 || 1749.80 || 9#/1bb ||
| |
| || 24\25 || 1825.88 || 9x/1b ||
| |
| || 25\25 || 1901.955 || 1 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>25edt</title></head><body>This scale coincidentally turns out to be 16 equal divisions of a stretched octave (1217.25 cents) and a tritave twin of the Armodue/Hornbostel flat third-tone system (6th=1065.095 cents, squared=2130.19 cents=228.235 cents, cubed=1293.33 cents, fourth power=2358.425 cents=456.47 cents).<br />
| |
|
| |
|
| | == Theory == |
| | 25edt corresponds to 15.7732…[[edo]], or 16 equal divisions of a stretched octave (1217.25{{c}}) and a tritave twin of the Armodue/Hornbostel flat third-tone system: |
| | * 6th = 1065.095{{c}} |
| | * squared = 2130.19{{c}} → 228.235{{c}} |
| | * cubed = 1293.33{{c}} |
| | * fourth power = 2358.425{{c}} → 456.47{{c}} |
|
| |
|
| <table class="wiki_table"> | | It can be used as a tuning for [[mavila]] and has an antidiatonic ([[2L 5s]]) scale which approximates [[Pelog]] tunings in Indonesian gamelan music. |
| <tr>
| |
| <th>Degree<br />
| |
| </th>
| |
| <th>cents<br />
| |
| </th>
| |
| <th>Armodue name<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>1\25<br />
| |
| </td>
| |
| <td>76.08<br />
| |
| </td>
| |
| <td>1#/2bb<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2\25<br />
| |
| </td>
| |
| <td>152.16<br />
| |
| </td>
| |
| <td>1x/2b<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3\25<br />
| |
| </td>
| |
| <td>228.235<br />
| |
| </td>
| |
| <td>2<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4\25<br />
| |
| </td>
| |
| <td>304.31<br />
| |
| </td>
| |
| <td>2#/3bb<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5\25<br />
| |
| </td>
| |
| <td>380.39<br />
| |
| </td>
| |
| <td>2x/3b<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6\25<br />
| |
| </td>
| |
| <td>456.47<br />
| |
| </td>
| |
| <td>3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7\25<br />
| |
| </td>
| |
| <td>532.55<br />
| |
| </td>
| |
| <td>3#/4b<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8\25<br />
| |
| </td>
| |
| <td>608.625<br />
| |
| </td>
| |
| <td>4<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9\25<br />
| |
| </td>
| |
| <td>684.70<br />
| |
| </td>
| |
| <td>4#/5bb<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10\25<br />
| |
| </td>
| |
| <td>760.78<br />
| |
| </td>
| |
| <td>4x/5b<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11\25<br />
| |
| </td>
| |
| <td>836.86<br />
| |
| </td>
| |
| <td>5<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12\25<br />
| |
| </td>
| |
| <td>912.94<br />
| |
| </td>
| |
| <td>5#/6bb<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13\25<br />
| |
| </td>
| |
| <td>989.02<br />
| |
| </td>
| |
| <td>5x/6b<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14\25<br />
| |
| </td>
| |
| <td>1065.095<br />
| |
| </td>
| |
| <td>6<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15\25<br />
| |
| </td>
| |
| <td>1141.17<br />
| |
| </td>
| |
| <td>6#/7bb<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16\25<br />
| |
| </td>
| |
| <td>1217.25<br />
| |
| </td>
| |
| <td>6x/7b<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17\25<br />
| |
| </td>
| |
| <td>1293.33<br />
| |
| </td>
| |
| <td>7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18\25<br />
| |
| </td>
| |
| <td>1369.41<br />
| |
| </td>
| |
| <td>7#/8b<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19\25<br />
| |
| </td>
| |
| <td>1445.485<br />
| |
| </td>
| |
| <td>8<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20\25<br />
| |
| </td>
| |
| <td>1521.56<br />
| |
| </td>
| |
| <td>8#/9bb<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21\25<br />
| |
| </td>
| |
| <td>1597.64<br />
| |
| </td>
| |
| <td>8x/9b<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22\25<br />
| |
| </td>
| |
| <td>1673.72<br />
| |
| </td>
| |
| <td>9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23\25<br />
| |
| </td>
| |
| <td>1749.80<br />
| |
| </td>
| |
| <td>9#/1bb<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24\25<br />
| |
| </td>
| |
| <td>1825.88<br />
| |
| </td>
| |
| <td>9x/1b<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25\25<br />
| |
| </td>
| |
| <td>1901.955<br />
| |
| </td>
| |
| <td>1<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | === Harmonics === |
| | {{Harmonics in equal|25|3|1|intervals=integer|columns=11}} |
| | {{Harmonics in equal|25|3|1|intervals=integer|columns=11|start=12|collapsed=true|title=Approximation of harmonics in 25edt (continued)}} |
| | |
| | === Subsets and supersets === |
| | Since 25 factors into primes as 5<sup>2</sup>, 25edt contains [[5edt]] as its only nontrivial subset edt. |
| | |
| | == Intervals == |
| | {| class="wikitable center-1 right-2 right-3" |
| | |- |
| | ! # |
| | ! [[Cent]]s |
| | ! [[Hekt]]s |
| | ! Armodue name |
| | |- |
| | | 0 |
| | | 0.0 |
| | | 0.0 |
| | | 1 |
| | |- |
| | | 1 |
| | | 76.1 |
| | | 52.0 |
| | | 1#/2bb |
| | |- |
| | | 2 |
| | | 152.2 |
| | | 104.0 |
| | | 1x/2b |
| | |- |
| | | 3 |
| | | 228.2 |
| | | 156.0 |
| | | 2 |
| | |- |
| | | 4 |
| | | 304.3 |
| | | 208.0 |
| | | 2#/3bb |
| | |- |
| | | 5 |
| | | 380.4 |
| | | 260.0 |
| | | 2x/3b |
| | |- |
| | | 6 |
| | | 456.5 |
| | | 312.0 |
| | | 3 |
| | |- |
| | | 7 |
| | | 532.5 |
| | | 364.0 |
| | | 3#/4b |
| | |- |
| | | 8 |
| | | 608.6 |
| | | 416.0 |
| | | 4 |
| | |- |
| | | 9 |
| | | 684.7 |
| | | 468.0 |
| | | 4#/5bb |
| | |- |
| | | 10 |
| | | 760.8 |
| | | 520.0 |
| | | 4x/5b |
| | |- |
| | | 11 |
| | | 836.9 |
| | | 572.0 |
| | | 5 |
| | |- |
| | | 12 |
| | | 912.9 |
| | | 624.0 |
| | | 5#/6bb |
| | |- |
| | | 13 |
| | | 989.0 |
| | | 676.0 |
| | | 5x/6b |
| | |- |
| | | 14 |
| | | 1065.1 |
| | | 728.0 |
| | | 6 |
| | |- |
| | | 15 |
| | | 1141.2 |
| | | 780.0 |
| | | 6#/7bb |
| | |- |
| | | 16 |
| | | 1217.3 |
| | | 832.0 |
| | | 6x/7b |
| | |- |
| | | 17 |
| | | 1293.3 |
| | | 884.0 |
| | | 7 |
| | |- |
| | | 18 |
| | | 1369.4 |
| | | 936.0 |
| | | 7#/8b |
| | |- |
| | | 19 |
| | | 1445.5 |
| | | 988.0 |
| | | 8 |
| | |- |
| | | 20 |
| | | 1521.6 |
| | | 1040.0 |
| | | 8#/9bb |
| | |- |
| | | 21 |
| | | 1597.6 |
| | | 1092.0 |
| | | 8x/9b |
| | |- |
| | | 22 |
| | | 1673.7 |
| | | 1144.0 |
| | | 9 |
| | |- |
| | | 23 |
| | | 1749.8 |
| | | 1196.0 |
| | | 9#/1bb |
| | |- |
| | | 24 |
| | | 1825.9 |
| | | 1248.0 |
| | | 9x/1b |
| | |- |
| | | 25 |
| | | 1902.0 |
| | | 1300.0 |
| | | 1 |
| | |} |
| | |
| | == See also == |
| | * [[16edo]] – relative edo |
| | * [[41ed6]] – relative ed6 |
| | * [[57ed12]] – relative ed12 |
| | |
| | {{Todo|expand}} |
| | [[Category:Armodue]] |
Prime factorization
|
52
|
Step size
|
76.0782 ¢
|
Octave
|
16\25edt (1217.25 ¢)
|
Consistency limit
|
6
|
Distinct consistency limit
|
6
|
25 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 25edt or 25ed3), is a nonoctave tuning system that divides the interval of 3/1 into 25 equal parts of about 76.1 ¢ each. Each step represents a frequency ratio of 31/25, or the 25th root of 3.
Theory
25edt corresponds to 15.7732…edo, or 16 equal divisions of a stretched octave (1217.25 ¢) and a tritave twin of the Armodue/Hornbostel flat third-tone system:
- 6th = 1065.095 ¢
- squared = 2130.19 ¢ → 228.235 ¢
- cubed = 1293.33 ¢
- fourth power = 2358.425 ¢ → 456.47 ¢
It can be used as a tuning for mavila and has an antidiatonic (2L 5s) scale which approximates Pelog tunings in Indonesian gamelan music.
Harmonics
Approximation of harmonics in 25edt
Harmonic
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
Error
|
Absolute (¢)
|
+17.3
|
+0.0
|
+34.5
|
+28.6
|
+17.3
|
-21.4
|
-24.3
|
+0.0
|
-30.2
|
+33.0
|
+34.5
|
Relative (%)
|
+22.7
|
+0.0
|
+45.4
|
+37.6
|
+22.7
|
-28.1
|
-32.0
|
+0.0
|
-39.8
|
+43.4
|
+45.4
|
Steps (reduced)
|
16 (16)
|
25 (0)
|
32 (7)
|
37 (12)
|
41 (16)
|
44 (19)
|
47 (22)
|
50 (0)
|
52 (2)
|
55 (5)
|
57 (7)
|
Approximation of harmonics in 25edt (continued)
Harmonic
|
13
|
14
|
15
|
16
|
17
|
18
|
19
|
20
|
21
|
22
|
23
|
Error
|
Absolute (¢)
|
-28.0
|
-4.1
|
+28.6
|
-7.1
|
-36.0
|
+17.3
|
-0.3
|
-13.0
|
-21.4
|
-25.8
|
-26.7
|
Relative (%)
|
-36.8
|
-5.4
|
+37.6
|
-9.3
|
-47.3
|
+22.7
|
-0.4
|
-17.1
|
-28.1
|
-34.0
|
-35.1
|
Steps (reduced)
|
58 (8)
|
60 (10)
|
62 (12)
|
63 (13)
|
64 (14)
|
66 (16)
|
67 (17)
|
68 (18)
|
69 (19)
|
70 (20)
|
71 (21)
|
Subsets and supersets
Since 25 factors into primes as 52, 25edt contains 5edt as its only nontrivial subset edt.
Intervals
#
|
Cents
|
Hekts
|
Armodue name
|
0
|
0.0
|
0.0
|
1
|
1
|
76.1
|
52.0
|
1#/2bb
|
2
|
152.2
|
104.0
|
1x/2b
|
3
|
228.2
|
156.0
|
2
|
4
|
304.3
|
208.0
|
2#/3bb
|
5
|
380.4
|
260.0
|
2x/3b
|
6
|
456.5
|
312.0
|
3
|
7
|
532.5
|
364.0
|
3#/4b
|
8
|
608.6
|
416.0
|
4
|
9
|
684.7
|
468.0
|
4#/5bb
|
10
|
760.8
|
520.0
|
4x/5b
|
11
|
836.9
|
572.0
|
5
|
12
|
912.9
|
624.0
|
5#/6bb
|
13
|
989.0
|
676.0
|
5x/6b
|
14
|
1065.1
|
728.0
|
6
|
15
|
1141.2
|
780.0
|
6#/7bb
|
16
|
1217.3
|
832.0
|
6x/7b
|
17
|
1293.3
|
884.0
|
7
|
18
|
1369.4
|
936.0
|
7#/8b
|
19
|
1445.5
|
988.0
|
8
|
20
|
1521.6
|
1040.0
|
8#/9bb
|
21
|
1597.6
|
1092.0
|
8x/9b
|
22
|
1673.7
|
1144.0
|
9
|
23
|
1749.8
|
1196.0
|
9#/1bb
|
24
|
1825.9
|
1248.0
|
9x/1b
|
25
|
1902.0
|
1300.0
|
1
|
See also