25edt: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
+subsets and supersets; +see also |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
== Theory == | |||
* 6th = 1065.095 | 25edt corresponds to 15.7732…[[edo]], or 16 equal divisions of a stretched octave (1217.25{{c}}) and a tritave twin of the Armodue/Hornbostel flat third-tone system: | ||
* squared = 2130.19 | * 6th = 1065.095{{c}} | ||
* cubed = 1293.33 | * squared = 2130.19{{c}} → 228.235{{c}} | ||
* fourth power = 2358.425 | * cubed = 1293.33{{c}} | ||
* fourth power = 2358.425{{c}} → 456.47{{c}} | |||
{| class="wikitable" | It can be used as a tuning for [[mavila]] and has an antidiatonic ([[2L 5s]]) scale which approximates [[Pelog]] tunings in Indonesian gamelan music. | ||
=== Harmonics === | |||
{{Harmonics in equal|25|3|1|intervals=integer|columns=11}} | |||
{{Harmonics in equal|25|3|1|intervals=integer|columns=11|start=12|collapsed=true|title=Approximation of harmonics in 25edt (continued)}} | |||
=== Subsets and supersets === | |||
Since 25 factors into primes as 5<sup>2</sup>, 25edt contains [[5edt]] as its only nontrivial subset edt. | |||
== Intervals == | |||
{| class="wikitable center-1 right-2 right-3" | |||
|- | |||
! # | |||
! [[Cent]]s | |||
! [[Hekt]]s | |||
! Armodue name | |||
|- | |- | ||
| 0 | |||
| 0.0 | |||
| 0.0 | |||
| 1 | |||
|- | |- | ||
| 1 | |||
| 76.1 | |||
|52 | | 52.0 | ||
| 1#/2bb | |||
|- | |- | ||
| 2 | |||
| 152.2 | |||
|104 | | 104.0 | ||
| 1x/2b | |||
|- | |- | ||
| 3 | |||
| 228.2 | |||
|156 | | 156.0 | ||
| 2 | |||
|- | |- | ||
| 4 | |||
| 304.3 | |||
|208 | | 208.0 | ||
| 2#/3bb | |||
|- | |- | ||
| 5 | |||
| 380.4 | |||
|260 | | 260.0 | ||
| 2x/3b | |||
|- | |- | ||
| 6 | |||
| 456.5 | |||
|312 | | 312.0 | ||
| 3 | |||
|- | |- | ||
| 7 | |||
| 532.5 | |||
|364 | | 364.0 | ||
| 3#/4b | |||
|- | |- | ||
| 8 | |||
| 608.6 | |||
|416 | | 416.0 | ||
| 4 | |||
|- | |- | ||
| 9 | |||
| 684.7 | |||
|468 | | 468.0 | ||
| 4#/5bb | |||
|- | |- | ||
| 10 | |||
| 760.8 | |||
|520 | | 520.0 | ||
| 4x/5b | |||
|- | |- | ||
| 11 | |||
| 836.9 | |||
|572 | | 572.0 | ||
| 5 | |||
|- | |- | ||
| 12 | |||
| 912.9 | |||
|624 | | 624.0 | ||
| 5#/6bb | |||
|- | |- | ||
| 13 | |||
| 989.0 | |||
|676 | | 676.0 | ||
| 5x/6b | |||
|- | |- | ||
| 14 | |||
| 1065.1 | |||
|728 | | 728.0 | ||
| 6 | |||
|- | |- | ||
| 15 | |||
| 1141.2 | |||
|780 | | 780.0 | ||
| 6#/7bb | |||
|- | |- | ||
| 16 | |||
| 1217.3 | |||
|832 | | 832.0 | ||
| 6x/7b | |||
|- | |- | ||
| 17 | |||
| 1293.3 | |||
|884 | | 884.0 | ||
| 7 | |||
|- | |- | ||
| 18 | |||
| 1369.4 | |||
|936 | | 936.0 | ||
| 7#/8b | |||
|- | |- | ||
| 19 | |||
| 1445.5 | |||
|988 | | 988.0 | ||
| 8 | |||
|- | |- | ||
| 20 | |||
| 1521.6 | |||
|1040 | | 1040.0 | ||
| 8#/9bb | |||
|- | |- | ||
| 21 | |||
| 1597.6 | |||
|1092 | | 1092.0 | ||
| 8x/9b | |||
|- | |- | ||
| 22 | |||
| 1673.7 | |||
|1144 | | 1144.0 | ||
| 9 | |||
|- | |- | ||
| 23 | |||
| 1749.8 | |||
|1196 | | 1196.0 | ||
| 9#/1bb | |||
|- | |- | ||
| 24 | |||
| 1825.9 | |||
|1248 | | 1248.0 | ||
| 9x/1b | |||
|- | |- | ||
| 25 | |||
| | | 1902.0 | ||
|1300 | | 1300.0 | ||
| 1 | |||
|} | |} | ||
== See also == | |||
* [[16edo]] – relative edo | |||
* [[41ed6]] – relative ed6 | |||
* [[57ed12]] – relative ed12 | |||
{{Todo|expand}} | |||
[[Category:Armodue]] | [[Category:Armodue]] | ||
Latest revision as of 09:07, 27 May 2025
← 24edt | 25edt | 26edt → |
25 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 25edt or 25ed3), is a nonoctave tuning system that divides the interval of 3/1 into 25 equal parts of about 76.1 ¢ each. Each step represents a frequency ratio of 31/25, or the 25th root of 3.
Theory
25edt corresponds to 15.7732…edo, or 16 equal divisions of a stretched octave (1217.25 ¢) and a tritave twin of the Armodue/Hornbostel flat third-tone system:
- 6th = 1065.095 ¢
- squared = 2130.19 ¢ → 228.235 ¢
- cubed = 1293.33 ¢
- fourth power = 2358.425 ¢ → 456.47 ¢
It can be used as a tuning for mavila and has an antidiatonic (2L 5s) scale which approximates Pelog tunings in Indonesian gamelan music.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +17.3 | +0.0 | +34.5 | +28.6 | +17.3 | -21.4 | -24.3 | +0.0 | -30.2 | +33.0 | +34.5 |
Relative (%) | +22.7 | +0.0 | +45.4 | +37.6 | +22.7 | -28.1 | -32.0 | +0.0 | -39.8 | +43.4 | +45.4 | |
Steps (reduced) |
16 (16) |
25 (0) |
32 (7) |
37 (12) |
41 (16) |
44 (19) |
47 (22) |
50 (0) |
52 (2) |
55 (5) |
57 (7) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -28.0 | -4.1 | +28.6 | -7.1 | -36.0 | +17.3 | -0.3 | -13.0 | -21.4 | -25.8 | -26.7 |
Relative (%) | -36.8 | -5.4 | +37.6 | -9.3 | -47.3 | +22.7 | -0.4 | -17.1 | -28.1 | -34.0 | -35.1 | |
Steps (reduced) |
58 (8) |
60 (10) |
62 (12) |
63 (13) |
64 (14) |
66 (16) |
67 (17) |
68 (18) |
69 (19) |
70 (20) |
71 (21) |
Subsets and supersets
Since 25 factors into primes as 52, 25edt contains 5edt as its only nontrivial subset edt.
Intervals
# | Cents | Hekts | Armodue name |
---|---|---|---|
0 | 0.0 | 0.0 | 1 |
1 | 76.1 | 52.0 | 1#/2bb |
2 | 152.2 | 104.0 | 1x/2b |
3 | 228.2 | 156.0 | 2 |
4 | 304.3 | 208.0 | 2#/3bb |
5 | 380.4 | 260.0 | 2x/3b |
6 | 456.5 | 312.0 | 3 |
7 | 532.5 | 364.0 | 3#/4b |
8 | 608.6 | 416.0 | 4 |
9 | 684.7 | 468.0 | 4#/5bb |
10 | 760.8 | 520.0 | 4x/5b |
11 | 836.9 | 572.0 | 5 |
12 | 912.9 | 624.0 | 5#/6bb |
13 | 989.0 | 676.0 | 5x/6b |
14 | 1065.1 | 728.0 | 6 |
15 | 1141.2 | 780.0 | 6#/7bb |
16 | 1217.3 | 832.0 | 6x/7b |
17 | 1293.3 | 884.0 | 7 |
18 | 1369.4 | 936.0 | 7#/8b |
19 | 1445.5 | 988.0 | 8 |
20 | 1521.6 | 1040.0 | 8#/9bb |
21 | 1597.6 | 1092.0 | 8x/9b |
22 | 1673.7 | 1144.0 | 9 |
23 | 1749.8 | 1196.0 | 9#/1bb |
24 | 1825.9 | 1248.0 | 9x/1b |
25 | 1902.0 | 1300.0 | 1 |